首页> 外文会议>IUTAM Symposium on Unsteady Separated Flows and their Control >Assessment of Flow Control Devices for Transonic Cavity Flows Using DES and LES
【24h】

Assessment of Flow Control Devices for Transonic Cavity Flows Using DES and LES

机译:使用DES和LES评估跨音腔流量的流量控制装置

获取原文

摘要

Since the implementation of internal carriage of stores on military aircraft, transonic flows in cavities were put forward as a model problem for validation of CFD methods before design studies of weapon bays can be undertaken. Depending on the free-stream Mach number and the cavity dimensions, the flow inside the cavity can become very unsteady. Below a critical length-to-depth ratio (L/D), the flow has enough energy to span across the cavity opening and a shear layer develops. When the shear layer impacts the downstream cavity corner, acoustical disturbances are generated and propagated upstream, which in turn causes further instabilities at the cavity front and a feedback loop is maintained. The acoustic environment in the cavity is so harsh in these circumstances that the noise level at the cavity rear has been found to approach 170 dB and frequencies near 1 kHz are created. The effect of this unsteady environment on the structural integrity of the contents of the cavity (e.g. stores, avionics, etc.) can be serious. Above the critical L/D ratio, the shear layer no longer has enough energy to span across the cavity and dips into it. Although this does not produce as high noise levels and frequencies as shorter cavities, the differential pressure along the cavity produces large pitching moments making store release difficult. Computational fluid dynamics analysis of cavity flows, based on the Reynolds-Averaged Navier-Stokes equations was only able to capture some of the flow physics present. On the other hand, results obtained with Large-Eddy Simulation or Detached-Eddy Simulation methods fared much better and for the cases computed, quantitative and qualitative agreement with experimental data has been obtained.
机译:由于在军用飞机上的内部运输商店的实施,因此腔内的横向流量被提出作为验证CFD方法的模型问题,以便在武器湾的设计研究之前进行。根据自由流Mach数和腔尺寸,腔内的流动可能变得非常不稳定。低于临界长度到深度比(L / D),流动具有足够的能量,以跨越腔开口和剪切层。当剪切层撞击下游腔角时,产生声扰动并在上游传播,这反过来导致腔正面的进一步稳定性,并且保持反馈回路。在这些情况下,腔中的声学环境在这些情况下被发现接近170dB的噪声水平并创建接近1kHz的频率。不稳定环境对腔体内容物的结构完整性(例如,商店,航空电子设备等)的影响可能是严重的。高于临界L / D比,剪切层不再有足够的能量来跨越腔体并浸入其中。尽管这不会产生作为较短腔的高噪声水平和频率,但是沿着腔的差压产生大的俯仰时刻使得储存释放困难。基于雷诺平均的Navier-Stokes方程的腔流量的计算流体动力学分析仅能够捕获存在的一些流量物理学。另一方面,利用大涡模拟或分离涡流模拟方法获得的结果更好,对于计算,定量和与实验数据的定性协议进行了更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号