首页> 外文会议>Advanced Maui Optical and Space Surveillance Technologies Conference >On-Orbit Smart Camera System to Observe Illuminated and Unilluminated Space Objects
【24h】

On-Orbit Smart Camera System to Observe Illuminated and Unilluminated Space Objects

机译:轨道智能摄像机系统,观察有启发性和未启发的空间物体

获取原文

摘要

The wide availability of Commercial Off-The-Shelf (COTS) electronics that can withstand Low Earth Orbit conditions has opened avenue for wide deployment of CubeSats and small-satellites. CubeSats thanks to their low developmental and launch costs offer new opportunities for rapidly demonstrating on-orbit surveillance capabilities. In our earlier work, we proposed development of SWIMSat (Space based Wide-angle Imaging of Meteors) a 3U CubeSat demonstrator that is designed to observe illuminated objects entering the Earth's atmosphere. The spacecraft would operate autonomously using a smart camera with vision algorithms to detect, track and report of objects. Several CubeSats can track an object in a coordinated fashion to pinpoint an object's trajectory. An extension of this smart camera capability is to track unilluminated objects utilizing capabilities we have been developing to track and navigate to Near Earth Objects (NEOs). This extension enables detecting and tracking objects that can't readily be detected by humans. The system maintains a dense star map of the night sky and performs round the clock observations. Standard optical flow algorithms are used to obtain trajectories of all moving objects in the camera field of view. Through a process of elimination, certain stars maybe occluded by a transiting unilluminated object which is then used to first detect and obtain a trajectory of the object. Using multiple cameras observing the event from different points of view, it may be possible then to triangulate the position of the object in space and obtain its orbital trajectory. In this work, the performance of our space object detection algorithm coupled with a spacecraft guidance, navigation, and control system is demonstrated. In our tests, we were able to successfully detect a transit 88% of the time with a= 0.5 DN sensor readout noise. Our method scales linearly in time and with the number of pixels, with the most computationally intensive phases being para
机译:可以承受低地球轨道条件的商业现货(COTS)电子设备的广泛可用性已打开大道,用于广泛部署立方体和小型卫星。 CubeSats由于他们的低发展和发布成本为快速展示了轨道监控能力提供了新的机会。在我们早先的工作中,我们提出了Swimsat的发展(基于空间的流星广角成像)一个3U CubeSat Sextsator,旨在观察进入地球大气的照明物体。航天器将使用具有视觉算法的智能相机自主地操作,以检测对象的跟踪和报告。几个小区ats可以以协调的方式跟踪对象以确定对象的轨迹。这种智能相机能力的扩展是利用我们正在开发的功能跟踪和导航到靠近地球对象(NEOS)的能力来跟踪未启蒙的物品。此扩展可以检测和跟踪人类无法轻易检测的对象。该系统维持夜空的密集星形图,并在时钟观测中进行圆形。标准光学流量算法用于获得相机视野中所有移动物体的轨迹。通过消除过程,某些恒星可能被过渡未合成的物体遮挡,然后将其用于首先检测并获得物体的轨迹。使用从不同观点观察事件的多个摄像机,然后可以将物体的位置与空间中的位置进行三角形,并获得其轨道轨迹。在这项工作中,对与航天器引导,导航和控制系统相结合的空间对象检测算法的性能。在我们的测试中,我们能够通过A = 0.5 DN传感器读出噪声成功检测到88%的时间。我们的方法随时间线性缩放,并具有像素的数量,具有最多计算的密集阶段是para

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号