首页> 外文会议>Conference on multispectral, hyperspectral, and ultraspectral remote sensing technology, techniques, and applications >Neural network estimation of atmospheric profiles usingAIRS/IASI/AMSU data in the presence of clouds
【24h】

Neural network estimation of atmospheric profiles usingAIRS/IASI/AMSU data in the presence of clouds

机译:在存在云中使用/ IASI / AMSU数据的神经网络估算

获取原文
获取外文期刊封面目录资料

摘要

As the forthcoming launch of the NPOESS Preparatory Project (NPP) nears, pre-launch predictions of onorbit performance are of critical importance to illuminate possible emphasis areas for the intensive calibration/ validation (cal/val) period to follow launch. During this period of intensive cal/val (ICV), quick-look performance assessment tools that can analyze global data over a variety of observing conditions will also play an important role in verifying and potentially improving environmental data record (EDR) quality. In this paper, we present recent work on a fast and accurate sounding algorithm based on neural networks for use with the Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS) to be flown on the NPP satellite. The algorithm is being used to assess pre-launch sounding performance using proxy data (where observations from current satellite sensors are transformed spectrally and spatially to resemble CrIS and ATMS) from the Atmospheric InfraRed Sounder (AIRS) and the Advanced Microwave Sounding Unit (AMSU) on the NASA Aqua satellite and the Infrared Atmospheric Sounding Interferometer (IASI) and AMSU/MHS (Microwave Humidity Sounder) on the EUMETSAT MetOp-A satellite. The algorithm is also being developed to provide a highly-accurate quick-look capability during the NPP ICV period. The present work focuses on the cloud impact on the infrared (AIRS/IASI/CrIS) radiances and explores the use of stochastic cloud clearing (SCC) mechanisms together with neural network (NN) estimation. A stand-alone statistical algorithm will be presented that operates directly on cloud-impacted AIRS/AMSU, IASI/AMSU, and CrIS/ATMS (collectively CrIMSS) data, with no need for a physical cloud clearing process. The algorithm is implemented in three stages. First, the infrared radiance perturbations due to clouds are estimated and corrected by combined processing of the infrared and microwave data using the SCC approach. The cloud clearing of the infrared radiances was performed using principal components analysis of infrared brightness temperature contrasts in adjacent fields of view and microwave-derived estimates of the infrared clear-column radiances to estimate and correct the radiance contamination introduced by clouds. Second, a Projected Principal Components (PPC) transform is used to reduce the dimensionality of and optimally extract geophysical profile information from the cloud-cleared infrared radiance data. Third, an articial feedforward neural network (NN) is used to estimate the desired geophysical parameters from the projected principal components. The performance of the method was evaluated using global (ascending and descending) EOS-Aqua and MetOp-A orbits co-located with ECMWF forecasts (generated every three hours on a 0.5-degree lat/lon grid) for a variety of days throughout 2003, 2004, 2005, and 2007. Over 1,000,000 fields of regard (3 x 3/2 x 2 arrays of footprints) over ocean and land were used in the study. The performance of the SCC/NN algorithm exceeded that of the AIRS Level 2 (Version 5) algorithm throughout most of the troposphere while achieving approximately 25-50 percent greater yield. Furthermore, the SCC/NN performance in the lowest 1 km of the atmosphere greatly exceeds that of the AIRS Level 2 algorithm as the level of cloudiness increases. The SCC/NN algorithm requires signicantly less computation than traditional variational retrieval methods while achieving comparable performance, thus the algorithm is particularly suitable for quick-look retrieval generation for post-launch CrIMSS performance validation.
机译:由于即将推出的NPoess预备项目(NPP)附近,对onorbit性能的预推出预测是对强化校准/验证(CAL / VAL)期间的可能强调领域来照亮可能的重点。在此期间的强化Cal / Val(ICV)期间,可以分析各种观察条件的全球数据的快速外观性能评估工具在验证和潜在地改善环境数据记录(EDR)质量方面也会发挥重要作用。在本文中,我们最近的基于神经网络的快速准确的探测算法的工作,用于与交叉轨道红外发声器(CRIS)和高级技术微波发声器(ATM)一起在NPP卫星上飞行。该算法用于评估使用代理数据(当前卫星传感器的观察)从大气红外发声器(AIR)和先进的微波探测单元(AMSU)(AMSU)和高级微波探测单元(AMSU)和高级微波探测单元(AMSU)谱和空间和ATMS的观察,从而评估预发射探测性能。在NASA Aqua卫星和红外大气探测干涉仪(IASI)和AMSU / MHS(微波湿度发声器)在Eumetsat Metop-卫星上。还开发了该算法以在NPP ICV期间提供高度准确的快速外观能力。本工作侧重于对红外(AIRS / IASI / CRIS)辐射的云影响,并探讨了随机云清除(SCC)机制以及神经网络(NN)估计。将介绍一项独立的统计算法,可直接在云影响的AIR / AMSU,IASI / AMSU和CRIS / ATM(统称的压缩)数据上运行,无需物理云清算过程。该算法以三个阶段实现。首先,通过使用SCC方法的红外和微波数据的组合处理来估计和校正引起的红外线扰动。使用邻近视野中的红外亮度温度对比度的主成分分析和红外透明柱辐射的微波推导估计的主要成分分析来进行红外线的云清除,以估计和校正由云引入的辐射污染。其次,使用预计的主成分(PPC)变换来降低来自云清除的红外线辐射数据的维度和最佳地提取地球物理配置文件的维度。第三,使用曲线前馈神经网络(NN)来估计来自预计的主成分的所需地球物理参数。使用全球(上升和下降)EOS-AQUA和MEDOP-A轨道在整个2003年的各个日期(在0.5度LAT / LON网格上每三个小时生成每三个小时生成)评估该方法的性能。 2004年,2005年和2007年。在研究中使用了超过1,000,000多个关于海洋和土地的围岩(3 x 3/2 x 2占地面积)。 SCC / NN算法的性能超过了大部分对流层的烟囱2(版本5)算法的性能,同时达到约25-50%的产量。此外,随着云度的水平增加,大气中最低1公里的SCC / NN性能大大超过了Airs Level 2算法的性能。 SCC / NN算法需要比传统的变分检索方法显着更少的计算,同时实现了可比性的性能,因此该算法特别适用于用于后发射压力的性能验证的快速查找生成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号