首页> 外文会议>GeoCongress >Lateral Capacity of Helical Piles-Actual vs. Theoretical Foundations for Solar Power Plants
【24h】

Lateral Capacity of Helical Piles-Actual vs. Theoretical Foundations for Solar Power Plants

机译:螺旋桩的横向容量 - 实际与太阳能发电厂的理论基础

获取原文

摘要

The construction of new solar power plants is occurring all over North America. Helical piles offer a cost effective solution for ground mount solar power plants due to their low material and production costs, fast installation in most soils, and their ability to develop sufficient uplift and lateral capacity with relatively short lengths. Structures that support solar panels are typically racks with panel mount systems supported by two to four piles. The typical size range for helical piles used for solar power plants is 3.5 to 8 inch (89 to 203 mm) diameter pipe shaft, and 7 to 15 foot (2.1 to 4.6 m) embedment depth. The helical piles are designed to resist compression, uplift, and lateral load. The axial forces are relatively small, except in areas of significant depth seasonally frozen ground or expansive soils. However, the lateral load can be significant and is typically the limiting condition for the pile design. This paper will examine the theoretical lateral capacity of helical piles based on the finite difference method used in the software program LPILE~(PLUS) by ENSOFT, Inc. LPILE is typically used for larger diameter driven piles and drilled shafts; it's validity for use with smaller pile diameters is not clear. The results of full-scale in-situ lateral load tests will be compared to the results obtained theoretically with LPILE by use of the soil parameters provided in geotechnical reports. Data from three test sites will be examined, with each soil condition being different. The results show that the actual lateral capacity based on in-situ tests is greater than what theoretical models predict, both in terms of load capacity and stiffness; regardless of the soil type. The LPILE model appears to predict better in clay and when the pile diameter increases. The possible reasons why the actual capacities are greater than the theoretical will be discussed, and what can be done to correct the theoretical models used. More research is needed to adjust the lateral capacity model so that it will provide more accurate results with respect to lateral capacity and deflection.
机译:新太阳能电厂的建设正在发生北美各地。螺旋桩提供地面具有成本效益的解决方案安装的太阳能发电站,由于其低的材料和生产成本,在大多数土壤快速安装,并且它们产生足够的隆起和横向容量具有相对短的长度的能力。支持太阳能电池板结构通常与由两个到四个桩支撑面板安装系统机架。的典型尺寸范围对于用于太阳能发电厂螺旋桩为3.5〜8英寸(89〜203毫米)的管轴,和7至15英尺(2.1至4.6米)埋入深度。螺旋桩设计成抵抗压缩,隆起,和横向负荷。轴向力相对较小,除显著深度季节性冻土或膨胀土的地方。然而,侧向负载可以是显著并且通常为桩设计的限制条件。本文将研究基于在软件程序LPILE〜(PLUS)由ENSOFT使用有限差分法的螺旋桩的理论容量侧,Inc.的LPILE通常用于较大直径的打入桩和钻孔轴;它的有效性与小直径桩的使用是不明确的。满量程的结果原位横向负荷试验将进行比较,以通过使用在岩土报告中提供的土壤参数与LPILE理论上获得的结果。从三个考点的数据将被检查,每个土壤条件是不同的。结果表明,基于现场测试的实际横向容量比什么理论模型预测更大,无论是在承载能力和刚度项;无论土壤类型。该LPILE模型似乎在粘土和当桩径增大更好地预测。可能的原因实际容量比理论是更大的将被讨论,并可以做些什么来纠正所使用的理论模型。需要更多的研究来调节侧向容量的型号,这样它会提供更精确的结果相对于侧向能力和挠度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号