首页> 外文会议>International Conference on Neutron and X-Ray Scattering >Density-Functional Approximation for the Spin Dependent Quantum Transport in Magnetic Nanostructures
【24h】

Density-Functional Approximation for the Spin Dependent Quantum Transport in Magnetic Nanostructures

机译:磁性纳米结构中旋转依赖量子传输的密度功能逼近

获取原文

摘要

In quasi-classical theoretical framework, the transport of electrons and holes in semiconductor devices is treated with the Boltzmann transport equation (BTE) or quantum-mechanical energy band theory - viz., the effective mass approximation and the random phase approximation. On the other hand, in the mesoscopic, nanoelectronic devices, for three- and lower- dimensional structures with nanometer scaling, the wave properties, spin, charge and the interactions between spin and charge of electrons are fully utilized such as in artificial mini-Brillouin zones, quantum size effects, Coulomb blockade of single-electron tunneling and spin-polarized giant magnetoresistance (GMR) tunneling. The complexity associated with the classical quantum-mechanical formalism in the study of transport in magnetic nanostructures can be avoided by applying the so-called, Hohenberg-Kohn's density functional theory. Because of the limitations of quasi-classical theory, it is more appropriate to treat the magneto-transport problem in nanostructures by using quantum many-body theory. The starting point of the quantum trans-port theory is to take an external field as a perturbation for the many-particle system in equilibrium. This leads to a linear response and gives corresponding transport coefficients. One useful application of the Green's function techniques in quantum magneto-transport is to convert a homogeneous differential equation into an integral equation, viz., as in the time-dependent Schrodinger equation. We have applied it to scattering of nanostructural defects (impurities) in the electron gas (metal) as many-body effect's model and derived an expression for its residual resistivity. Calculations of magnetic impurities in noble-metal hosts are in good agreement with the previously published results.
机译:在准经典框架中,半导体器件中的电子和孔的传输用Boltzmann传输方程(BTE)或量子机械能带理论 - viz处理。,有效质量近似和随机相位近似。另一方面,在介于和低尺寸结构中,具有纳米缩放的三维结构,波形,旋转,电荷和电子之间的相互作用,旋转和电荷之间的相互作用是充分利用,例如在人工迷你布里渊中区域,量子尺寸效应,单电子隧道和旋转极化巨磁阻(GMR)隧道的库仑阻断。通过施加所谓的Hohenberg-Kohn的密度泛函理论,可以避免与磁性纳米结构转运研究中的经典量子机械形式主义相关的复杂性。由于准经典理论的局限性,通过使用量子数量理论将纳米结构中的磁输送问题更合适。量子跨港理论的起点是将外部领域作为平衡中的许多粒子系统的扰动。这导致线性响应并提供相应的传输系数。在量子磁传输中的绿色功能技术的一个有用应用是将均匀的微分方程转换为整体方程,viz。,如在时间依赖的schrodinger方程中。我们已经将其应用于电子气体(金属)中的纳米结构缺陷(杂质)作为多体效应的模型,并衍生出其残余电阻率的表达。贵金属宿主中磁性杂质的计算与先前公布的结果吻合良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号