首页> 外文期刊>Journal of Materials Research >Radiation effects on the magnetism and the spin dependent transport in magnetic materials and nanostructures for spintronic applications
【24h】

Radiation effects on the magnetism and the spin dependent transport in magnetic materials and nanostructures for spintronic applications

机译:辐射对磁性和自旋电子学应用的磁性材料和纳米结构中自旋相关输运的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Spintronics utilizes spin or magnetism to provide new ways to store and process information and is primarily associated with the utilization of spin polarized currents in memory and logic devices. With the end of silicon transistor technology in sight, spintronics can provide new paradigms for information processing and storage. Compared to charge based electronics, the advantages of magnetism/spin based devices are nonvolatility and ultra low power. In particular, magnetoresistive random access memories (MRAMs) are known to be "Rad Hard" [HXNV0100 64K × 16 Non-Volatile Magnetic RAM, S. Gerardin and A. Paccagnella, IEEE Trans. Nucl. Sci. 57(6), 3016-3039 (2010), R.R. Katti, J. Lintz, L. Sundstrom, T. Marques, S. Scoppettuolo, and D. Martin, Proceedings of IEEE Radiation Effects Data Workshop, 103-105 (2009)] and are considered to be critical components for space and military systems due to their very low power consumption and nonvolatility. However, advances in the magnetic nanostructures and new materials for the scalability of MRAM and other potential applications require a re-evaluation of their radiation hardness. This review focuses mainly on recent progress in understanding the effects of irradiation on the magnetic materials and magnetic structures that are related to MRAM technology. Up to date, the most pronounced effects on the microstructures and the properties are linked to the displacement damage associated with heavy ion irradiation; however, the thermal effect is also important as it acts as an annealing process to recover the damage partially. Critical metrics for the magnetic tunnel junctions for postmortem characterizations will also be discussed. Finally, with the introduction of new perpendicular magnetic layers and the very thin MgO barrier layer in the next generation MRAM, the effects of the ionization damage shall be studied in the future.
机译:自旋电子学利用自旋或磁性来提供存储和处理信息的新方法,并且主要与存储器和逻辑设备中自旋极化电流的利用有关。随着硅晶体管技术的终结,自旋电子学可以为信息处理和存储提供新的范例。与基于电荷的电子产品相比,基于磁性/自旋的设备的优势是非易失性和超低功耗。特别是,磁阻随机存取存储器(MRAM)已知是“ Rad Hard” [HXNV0100 64K×16非易失性磁性RAM,S。Gerardin和A. Paccagnella,IEEE Trans。核仁科学57(6),3016-3039(2010),RR Katti,J.Lintz,L.Sundstrom,T.Marques,S.Scoppettuolo和D.Martin,IEEE辐射效应数据研讨会论文集,103-105(2009) ],并且由于其极低的功耗和非易失性而被视为太空和军事系统的关键组件。但是,磁性纳米结构的发展和用于MRAM可扩展性的新材料以及其他潜在应用要求重新评估其辐射硬度。这项审查主要侧重于了解辐射对与MRAM技术相关的磁性材料和磁性结构的影响的最新进展。迄今为止,对微结构和性能的最明显影响与重离子辐照引起的位移损伤有关。但是,热效应也很重要,因为它可以作为退火过程来部分恢复损伤。还将对尸体表征中的磁性隧道结的关键指标进行讨论。最后,在下一代MRAM中引入新的垂直磁性层和非常薄的MgO势垒层后,将来将研究电离损伤的影响。

著录项

  • 来源
    《Journal of Materials Research》 |2015年第9期|1430-1439|共10页
  • 作者单位

    Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, USA;

    Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA;

    Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, USA Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA;

    Naval Research Laboratory, Washington, District of Columbia 20375, USA;

    Naval Research Laboratory, Washington, District of Columbia 20375, USA;

    Naval Research Laboratory, Washington, District of Columbia 20375, USA;

    Samsung Semiconductor Inc., San Jose, California 95134, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号