首页> 外文会议>AIAA Space Conference and Exposition >Architecture Modeling of In-Situ Oxygen Production and itsImpacts on Lunar Campaigns
【24h】

Architecture Modeling of In-Situ Oxygen Production and itsImpacts on Lunar Campaigns

机译:造型建筑建模原位氧气生产与月球运动

获取原文

摘要

In-situ lunar oxygen production has the potential to reduce the cargo mass launched from Earth necessary to sustain a lunar base. As research and development in lunar oxygen production continue, modeling tools are being used to help characterize the many possible system architectures and guide decisions for future plant designs. Using the previously built NASA In-Situ Resource Utilization (ISRU) System Model, an optimization tool was developed to facilitate exploration of the design space of the different system architectures represented in the model. For each architecture, an optimization of the continuous design space is performed using a gradient-based search. In instances when the gradient-based search cannot converge, the tool changes to simulated annealing, a heuristic method. Nine primary lunar oxygen production system architectures were optimized to minimize system mass for oxygen production levels from 500 kg/yr to 6000 kg/yr. Good designs minimized mass and maximized produced oxygen with system masses in the range of 100 kg to 700 kg. Preliminary results show that two particular architectures populate the Pareto-optimal front of best designs for most production levels, making them attractive for further investigation. An economy of scale of .837 was found using a power law regression, indicating that some economy of scale exists (values less than one have economy of scale) and that launching fewer, higher-capacity plants will be less massive overall than many small-capacity plants to achieve the same total production level. A simplified comparison of lunar-produced oxygen for crew breathing supply and ECLSS (environmental control and life support systems) technologies was performed with a space logistics planning tool, SpaceNet. For all but the most advanced ECLSS technologies, use of in-situ oxygen over a 10-year campaign resulted in more than 12,000 kg of consumables cargo launch mass savings.
机译:原位月球氧气生产有可能降低从遭受月球基地所需的地球发射的货物群众。随着农历生产中的研发继续,建模工具用于帮助表征许多可能的系统架构以及未来工厂设计的决策。使用先前构建的NASA原位资源利用率(ISRU)系统模型,开发了一种优化工具,以便于探索模型中所示的不同系统架构的设计空间。对于每个架构,使用基于梯度的搜索来执行连续设计空间的优化。在实例中,当基于梯度的搜索不能收敛时,刀具更改为模拟退火,启发式方法。九初级月球氧气生产系统架构被优化,以最大限度地减少500 kg / yr至6000 kg / yr的氧气产量水平的系统质量。良好的设计最小化质量和最大化的产生氧气,系统质量在100kg至700 kg的范围内。初步结果表明,两种特定的架构填充了最佳设计的帕累托 - 最佳设计,使其具有进一步调查的吸引力。使用权力法回归发现了.837的经济性,表明存在一些规模经济存在(价值低于一个具有规模经济的价值),并且发射更少,更高的植物总体的植物比许多小 - 能力植物实现相同的总产水平。使用SpaceNet的空间物流规划工具进行了用于船员呼吸供应和eCLS(环境控制和寿命支持系统)技术的Munar制作的氧气的简化比较。除了最先进的ECLS技术,使用原位氧气超过10年的活动,导致超过12,000公斤的耗材货物发射群众储蓄。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号