首页> 外文会议>International Conference of Recent Advances in Microwave Theoty and Applications >Design and Simulation of Microstrip M-Patch Antenna with Double Layer
【24h】

Design and Simulation of Microstrip M-Patch Antenna with Double Layer

机译:双层微带M贴片天线的设计与仿真

获取原文

摘要

In this paper, we are going to discuss about the current trends in the design of Microstrip M patch antenna intended for various applications and it is a innovative nature never tried out earlier. This opens up a new avenue for different frequency ranges and new applications yet easily realizable with maximum advantages. In Rectangular Micro Strip patch Antennas [RMSA] with Negative Capacitance and inductance for bandwidth enhancement. Micro strip antennas have been found favorable because they are: 1. Low Profile 2. Inexpensive to manufacture and compatible with monolithic microwave integrated circuit designs (MMIC) But they also suffer due to (a) low efficiency (b) Narrow impedance band width. Input impedance of an antenna tends to be sensitive to changes in frequency, hence deviation of the antennas input impedance from a real fixed value often determines the operational range of the antenna. Input impedance of MSDA depends on its with geometrical shape, dimension and the feed type. Therefore antenna input impedance is an important design parameter which controls the radiated power and the impedance bandwidth. In most application, bandwidth limitations occur due to an impedance mismatch. In the respect micro strip antenna have narrow bandwidth because of heavy reactance. As micro strip antennas have found vide variety of application areas, a number of techniques are evolved to improve its limited bandwidth. A straight forward application to improve the bandwidth is increasing the thickness of substrate supporting the micro strip patch. However limitation shall exist on the ability to effectively feed the patch on a thick substrate and the radiation efficiency can degrade with increasing substrate thickness. Techniques for overcoming this band limiting problems can be achieved by using parasitic terms elements, external matching and separating the feed and antenna. Proximity coupling method uses an impedance matching stub connected to the feed line achieving 13% bandwidth. A broadband rectangular patch antenna with a pair of vide slits at near the resonance frequency improves to 24% bandwidth. Bandwidth of 10-12% can be obtained using passive coplanar matching network. Impedance bandwidth of 60% was achieved using the L and T slots in the micro strip slot antenna, however gain and radiation pattern are distorted. Using aperture coupled antenna BW large than 20% and cross polarization level lower than -30 db can be achieved. Bandwidth of circular loop antenna can be significantly increased when one more parasitic loop in added.
机译:在本文中,我们将讨论关于各种应用程序的微带M贴片天线设计中的当前趋势,并且它是一种创新的自然从未尝试过早尝试。这为不同的频率范围和新应用开辟了新的大道,但易于实现的最大优势。在矩形微带贴片天线[RMSA]具有负电容和带宽增强的电感。微带天线已被发现有利,因为它们是:1。低调2.制造廉价,与单片微波集成电路设计(MMIC)兼容,但它们也因(a)低效率(b)窄阻抗带宽而受到影响。天线的输入阻抗倾向于对频率的变化敏感,因此来自真实固定值的天线输入阻抗的偏差通常决定了天线的操作范围。 MSDA的输入阻抗取决于其具有几何形状,尺寸和进料类型。因此,天线输入阻抗是控制辐射功率和阻抗带宽的重要设计参数。在大多数应用中,由于阻抗不匹配,发生带宽限制。在尊重的情况下,由于抗抗性,微条带天线具有窄的带宽。随着微型条带天线已经找到了应用领域的各种各样的应用领域,发展了许多技术以改善其有限的带宽。直接应用以改善带宽的增加是增加支撑微带贴片的基板的厚度。然而,限制应在有效地馈送厚基板上的能力,并且辐射效率可以随着基板厚度的增加而降解。通过使用寄生术语元素,外部匹配和分离馈电和天线,可以实现用于克服该频段限制问题的技术。接近耦合方法使用连接到馈电线的阻抗匹配存根实现13%带宽。宽带矩形贴片天线,近谐振频率的一对扫描槽可提高到24%的带宽。使用被动共面匹配网络可以获得10-12%的带宽。使用微带槽天线中的L和T槽实现了60%的阻抗带宽,但是增益和辐射模式扭曲。使用大于20%的孔径耦合天线BW,可以实现低于-30dB的交叉偏振电平。当添加一个进入的寄生环时,可以显着增加圆环天线的带宽。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号