【24h】

Physical Mechanics of In-Pore Phase Transition

机译:孔隙相转变的物理力学

获取原文

摘要

In this paper we show how the mechanics of confined phase transition within a deformable porous solid can be addressed in a unique framework, whatever the phase transition considered, either the liquid-gas transition involved in the drying of porous materials or the liquid-solid transition involved in their freezing. Indeed, owing to stability considerations a hydrostatic stress is shown to ultimately prevail within the solid crystal phase so that the latter behaves like a compressible elastic fluid as long as only in-pore phase transition is involved. The extension of saturated poroelasticity to unsaturated conditions allows us to work out appropriate constitutive equations to capture the deformation resulting from in-pore phase transition within an elastic porous solid, while the use of homogenization schemes provides estimates of the unsaturated poroelastic these constitutive equations involve. The prediction of the drying shrinkage or that of the deformation due to cryosuction during freezing reveals the significant effect of the pore size distribution, since the intensity of both the deformation and the elastic energy that the solid matrix can store strongly depends upon the homogenization scheme.
机译:本文展示了如何在独特的框架中解决可变形多孔固体内被狭窄的相变的机制如何解决,无论考虑相位过渡,涉及多孔材料干燥的液体气体转变还是液体固体过渡参与他们的冻结。实际上,由于稳定​​性考虑,所示的静水应力最终在固体晶相内占上足,使得后者的表现类似于可压缩弹性流体,只要仅涉及孔隙相转变即可。饱和孔弹性与不饱和条件的延伸使我们能够解决适当的组成方程,以捕获由孔隙相转变在弹性多孔固体内产生的变形,而均质化方案的使用提供了不饱和孔弹性这些本构方程的估计。在冷冻期间预测干燥收缩或由于丧失丧失引起的变形的预测显示了孔径分布的显着效果,因为固体基质可以坚实地存储的变形和弹性能量的强度取决于均质化方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号