首页> 外文会议>International Conference on Frontiers of Characterization and Metrology for Nanoelectronics >From Large Research Instruments To An Industrial Control: X-ray Photoelectron Spectroscopy Characterizations Of Advanced Technology Gate Stack
【24h】

From Large Research Instruments To An Industrial Control: X-ray Photoelectron Spectroscopy Characterizations Of Advanced Technology Gate Stack

机译:从大型研究仪器到工业控制:先进技术门堆叠的X射线光电子能谱特征

获取原文

摘要

With the continuous downscaling of integrated circuit, metrology techniques have to face new challenges to support the development of advanced technology nodes. One of them is the composition determination of nanometer thick multilayers films. Since the 32nm node, the SiO_2 gate insulator has been replaced by the High-k Metal Gate (HKMG) film stack [1]. For the 14nm node, this HKMG stack is composed of a high-k HfON layer deposited on a SiON interfacial layer (IL), to prevent the formation of a bad quality SiO_2 layer between the HfON layer and the channel [2]. To reach the transistor specifications, thickness and composition of the different deposited layers must be precisely controlled. For the HKMG stack, the amount of nitrogen in the HfON and SiON layers is specifically critical. Nevertheless, for such thin layers, conventional optical metrology techniques, well suited for volume measurements, are difficult to implement. This is why X-ray based techniques, more suited for surface characterization, are increasingly used. X-Ray Photoelectron Spectroscopy (XPS) is a well-established method for the analysis of ultrathin films thanks to its surface sensitivity (<100A) and its ability to chemically characterize samples [3]. Hence, in this work we present three different XPS systems, used to characterize the HfON/SiON HKMG stack: a Nano Angle Resolved Photoelectron Spectroscopy (Nano-ARPES) system using the SOLEIL synchrotron ANTARES beam line [4], a Thermo Fisher Scientific laboratory pARXPS (parallel Angle Resolved XPS) system and an in-line NOVA system. The Nano-ARPES and the pARXPS, thanks to the angular information, can provide depth resolved information on the chemical state of near-surface layers [5]. The in-line NOVA system, optimized for an industrial use, can quickly and accurately provide ultra-thin film stack information. These three tools, based on the same technique, exhibit different way to implement it, whether it is resolution driven or used in a production purpose (Figure 1).
机译:随着集成电路的连续缩小,计量技术必须面临新的挑战,以支持先进技术节点的开发。其中一个是纳米厚多层膜的组成测定。由于32nm节点,SiO_2栅极绝缘体已被高k金属栅极(HKMG)膜堆叠[1]代替。对于14纳米节点,此HKMG堆栈是由沉积在的SiON界面层(IL)上的高k层HFON的,以防止HFON层和沟道[2]之间的质量差SiO_2层的形成。为了到达晶体管规格,必须精确地控制不同沉积层的厚度和组成。对于HKMG堆叠,HFON和SION层中的氮气量特别关键。然而,对于这种薄层,常规光学计量技术非常适合体积测量,难以实现。这就是为什么X射线基的技术越来越适合表面表征。 X射线光电子能谱(XPS)是由于其表面敏感性(<100A)及其化学表征样品的能力,是对超薄膜分析的良好方法[3]。因此,在这项工作中,我们呈现了三种不同的XPS系统,用于表征HFON / SION HKMG堆栈:使用SOLEIL SYNCHROTRON ANTALS梁线[4],纳米角度分辨的光电子能谱(纳米ARPES)系统,ThemoIr Fisher Scientific实验室Parxps(平行角度已解决的XPS)系统和在线Nova系统。由于角度信息,纳米Arpes和Parxps可以提供有关近表面层的化学状态的深度分辨信息[5]。为工业用途进行了在线Nova系统,可以快速准确地提供超薄膜堆栈信息。这三个工具基于相同的技术,表现出不同的方法来实现它,无论是在生产目的中驱动还是使用的分辨率(图1)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号