首页> 外文会议>SPE Annual Technical Conference and Exhibition >Production Forecasting for Shale Gas Reservoirs with Nanopores and Complex Fracture Geometries Using An Innovative Non-Intrusive EDFM Method
【24h】

Production Forecasting for Shale Gas Reservoirs with Nanopores and Complex Fracture Geometries Using An Innovative Non-Intrusive EDFM Method

机译:使用创新的非侵入性EDFM方法对纳米孔和复杂裂缝几何形式的页岩气藏生产预测

获取原文

摘要

A rigorous and efficient numerical method for simulation of shale gas production considering complex hydraulic and natural fracture geometries and multiple gas transport mechanisms in nanopores is very important to evaluate stimulation effectiveness.In this study,we present an innovative EDFM(Embedded Discrete Fracture Model)method in conjunction with the third-party compositional reservoir simulator to simulate shale gas production considering all these complexities.Through the EDFM method,complex hydraulic and natural fractures can be directly and explicitly embedded in the matrix blocks.The complex fracture geometries can easily be handled without using local grid refinement near fractures or using unstructured gridding technique.In addition,gas transport mechanisms such as non-Darcy flow,gas desorption,gas slippage and pressure-dependent matrix permeability and fracture conductivity are included in the model.The LBM(lattice Boltzmann method)was used to model gas slippage phenomenon in nanopores.We verified the EDFM method against the LGR(local grid refinement)method for dealing with simple bi-wing fractures and the computational efficiency was also compared.After validation,we applied the EDFM method to perform history matching and production forecasting for an actual shale-gas well from Marcellus shale formation.Both simple and complex fracture geometries were considered and compared.Complex fracture geometry was predicted by a fracture propagation model considering natural fractures.Through history matching,conductivities of hydraulic fractures,active and non-active natural fractures were determined.The complex fracture geometry performs better in terms of productivity than the simple fracture geometry due to a larger amount of conductive fracture surface area.The simulation results based on an actual shale-gas well show that gas desorption and gas slippage significantly affects ultimate gas recovery,which can increase gas recovery after 30 years by 46.8%.Pressure-dependent matrix permeability and fracture conductivity play a negative impact on well productivity,which can reduce gas recovery after 30 years by 14%.Hence,complex fracture geometries and gas transport mechanisms should be properly accounted for in the numerical model in order to achieve more accurate long-term production forecasting of shale-gas wells.
机译:页岩气生产的模拟考虑在纳米孔复杂的液压和天然裂缝的几何形状和多个气体传输机制甲严格和有效的数值方法是非常重要的,我们提出了一种创新的EDFM刺激effectiveness.In本研究来评价(嵌入式离散断裂模型)方法与第三方的组成储层模拟器一起模拟页岩气产量,考虑所有这些复杂性。通过EDFM方法,复杂的液压和自然裂缝可以直接和明确地嵌入在基质块中。可以在没有的情况下容易地处理复杂的骨折几何形状。在骨折附近或使用非结构化格栅技术附近使用本地网格细化。另外,模型中包括非达西流动,气体解吸,气体滑动和压力导电性等气体传输机制。LBM(格子玻璃板方法)用于模拟气体滑动现象在纳米孔中。我们验证了针对LGR(本地电网细化)的EDFM方法,用于处理简单的双翼骨折,并且还比较计算效率。验证后,我们应用了EDFM方法执行历史匹配和生产预测实际页岩气以及从马塞勒斯页岩formation.Both简单和复杂的几何形状的断裂被认为和compared.Complex裂缝几何形状是由一裂缝延伸模型预测考虑自然fractures.Through历史匹配,水力裂缝,活性和非活性的天然的电导率骨折患者determined.The复杂裂缝几何形状进行更好在由于基于实际的页岩气井表明,气体解吸和气体滑脱显著影响的导电断裂面area.The模拟结果的较大的量生产率比简单的裂缝几何形状方面最终的气体回收率,可以在30年后增加气体回收率46.8%.pres依赖依赖性矩阵渗透率和断裂电导率对良好生产率发挥负面影响,这可以在30年后降低气体回收率14%。应该在数值模型中适当地考虑复杂的骨折几何形状和气体运输机制以实现更准确的页岩气井长期生产预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号