首页> 外文会议>European Conference on Lasers Electro-Optics and the International Quantum Electronics Conference >Continuous Variable Polarization Entanglement via the Kerr Nonlinearity in an Optical Fiber
【24h】

Continuous Variable Polarization Entanglement via the Kerr Nonlinearity in an Optical Fiber

机译:通过光纤中的kerr非线性连续可变极化纠缠

获取原文

摘要

Continuous variable polarization states have attracted much attention due to their apparent applicability to quantum information networks. Polarization entanglement was first presented by transformation of the well-known quadrature entanglement onto the polarization basis by W. P Bowen et al [1]; the inseparability criteria as well as the EPR paradox criteria for Stokes operators were also demonstrated. We extend the generation of such highly quantum correlated states using the interference of two fiber-based polarization squeezing sources. This squeezing can be efficiently created based on the nonlinear effect (χ{sup}(3)) experienced by ultra-short pulses in fused silica fibers [2]: two linearly orthogonal polarized modes with identical amplitudes propagate through a polarization maintaining fiber, they experience the same nonlinearity and the phase of the interference between them is controlled to achieve circularly polarized light (S{sub}3 Stokes parameter) at the output. Then the output has a squeezing in the dark "S{sub}1-S{sub}2" Stokes operator plane and with a small angle θ{sub}(sq) to S{sub}1. Polarization entanglement is generated by the interference of two such independent polarization squeezed fields (A, B). As shown in Fig.1, they propagate through the equal-length same-type fibers and have the same optical power after the fiber, thus have the same squeezing angle θ{sub}(sq). These beams then interfere on a 49/51 beam splitter with a visibility of ≥98% and the relative phase between the input beams is controlled to π/2. The output beams then remain circularly polarized (denoted as T{sub}(3,A(B)) to distinguish from the input fields) and exhibit strong quantum noise correlations in the conjugate pair of Stokes operators in dark plane (T{sub}A(θ{sub}(sq))+T{sub}B(θ{sub}(sq)) and T{sub}A(θ{sub}(sq) + π/2)-T{sub}B(θ{sub}(sq) + π/2)). These are measured by properly rotating both the half-wave plates in the measurement setup. When the input fields have polarization squeezing of -4.1 ± 0.2 dB (-3.9 ± 0.2 dB) and anti-squeezing of 19.7 ± 0.1 dB (19.8 ± 0.1 dB), the results of these measurements are given by Fig. 2: the correlation of the squeezing (anti-squeezing) quadrature is -3.3 ± 0.2 (-2.8 ± 0.2) dB. The sum of these variances gives 0.99 ± 0.02 < 2 which satisfies the inseparability criterion for the polarization variables (Ref. 1 and references therein). The difference between the experimental result and theoretical calculation (0.84 ± 0.04) is explained by imperfections in the production and measurement systems.
机译:由于对量子信息网络的表观适用性,连续变量极化状态引起了很多关注。首先通过W.P Bowen等[1]将众所周知的正交缠结转化为偏振基础的众所周知的正交纠缠来呈现极化纠缠。还证明了不可分割性标准以及斯托克斯运营商的epr悖论标准。我们使用基于两种光纤的极化挤压源的干扰来扩展这种高量子相关状态的产生。可以基于熔融二氧化硅纤维中的超短脉冲经历的非线性效果(χ{sup}(3))有效地创建这种挤压[2]:它们通过偏振保持光纤传播两个具有相同幅度的线性正交偏振模式体验相同的非线性和它们之间的干扰的相位被控制为在输出处实现圆极化光(S {Sub} 3 Stokes参数)。然后,输出在暗“S {sub} 1-s {sub} 2”中挤出了ZOOKES操作员平面,并且具有小角度θ{子}(SQ)至S {SUB} 1。通过两个这样的独立偏振挤压场(A,B)的干扰产生极化纠缠。如图1所示,它们通过相等长度的相同型光纤传播并在光纤之后具有相同的光功率,因此具有相同的挤压角θ{子}(SQ)。然后,这些光束干扰49/51分束器,其可视性≥98%,并且输入光束之间的相对相位被控制在π/ 2之间。然后输出光束保持圆偏振(表示为T {sub}(3,a(b))以区分从输入字段),并在暗平面(t {sub}中的缀合物对斯托克斯运算符中表现出强的量子噪声相关性(t {sub} a(θ{sub}(sq))+ t {sub} b(θ{sub}(sq))和t {sub} a(θ}(sq)+π/ 2)-t {sub} b (θ{sub}(sq)+π/ 2)))。这些通过在测量设置中正确旋转半波形板来测量。当输入字段具有-4.1±0.2 dB(-3.9±0.2 dB)的偏振挤压并抗挤压为19.7±0.1dB(19.8±0.1dB),因此图2给出了这些测量结果。2:相关性挤压(抗挤压)正交为-3.3±0.2(-2.8±0.2)dB。这些差异的总和给出了0.99±0.02 <2,其满足了偏振变量的不可分割性标准(参考文献1和其中的参考文献)。通过生产和测量系统的缺陷解释了实验结果和理论计算之间的差异(0.84±0.04)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号