首页> 外文会议>European Conference on Lasers Electro-Optics and the International Quantum Electronics Conference >Ultrafast Gain Recovery in Quantum Dot based Semiconductor Optical Amplifiers
【24h】

Ultrafast Gain Recovery in Quantum Dot based Semiconductor Optical Amplifiers

机译:超快基于半导体光放大器中的超快增益恢复

获取原文
获取外文期刊封面目录资料

摘要

Semiconductor optical amplifiers (SOAs) are key to GHz operation in the new optical telecommunication networks. Quantum dot (QD) based SOAs are outperforming their bulk and quantum well based competitors. The limiting factor in ultrahigh bit rate amplification is the ultrafast population recovery in the resonant level, which is mainly limited by carrier capture and relaxation processes in the QD. We use pump-probe measurements resonant to the QDs confined states energies (ground and excited state) to investigate the response to a four fs-pulse train of 1 THz repetition rate. A deep insight about the capture process implied is then obtained, and direct capture from the wetting layer is identified as the dominant mechanism in the high current regime. The device active medium is formed by 15 layers of MBE-grown InGaAs QD-in-a-well nanostructures and lays in the center of an AlGaAs waveguide, contacts are made as in the sketch of fig.1. Seeking a faster overall performance, p-modulation doping is used in the QDs layers. The deeply etched ridge waveguide (with a width of 2 μm and a length of 1 mm, as show in Fig 1) allows us to work at higher effective currents than normal in this kind of devices, filling the complete ensemble of QDs due to a better current distribution. Lasing is suppressed using a broadband antireflection coating in both ends of the amplifier, allowing single pass transmission experiments. The gain dynamics in the amplifier are measured by femtosecond pump-probe technique with heterodyne detection. Using two Michelson interferometers, up to four 150 fs long Fourier-limited pump-pulses are generated with a controllable delay in a picosecond time range. The gain dynamics is measured at room temperature as a function of injection currents and excitation power, either resonant to the ground state (GS) at 1.3 μm or resonant to the excited state (ES) at 1.2 μm. Fig 2. shows the gain evolution after one, two and four pulses trains when incident beam power is enough to momentary deplete the ground state population (complete depletion of the gain can be observed (Gain below 1)).
机译:半导体光放大器(SOA)是新光电信网络中GHz操作的关键。 Quantum Dot(QD)的SOA是优于其散装和量子阱的竞争对手。超高比特率放大的限制因素是谐振水平超快群体恢复,其主要受QD中的载流子捕获和弛豫过程的限制。我们使用泵探测测量谐振到QDS限制状态能量(地面和激发状态),以研究对1 ZHz重复率的四个FS脉冲训练的响应。然后获得暗示捕获过程的深层洞察,并将从润湿层的直接捕获被识别为高电流制度中的主机制。器件活性介质由15层的MBE生长的InGaAs QD-in-孔纳米结构形成并在AlgaAs波导的中心处铺设,使得与图1的草图中的触点。在QDS层中使用P调制掺杂来寻求更快的整体性能。深度蚀刻的脊波导(宽度为2μm,长度为1mm,如图1所示)允许我们在这种设备中的正常工作中工作比正常相比,填充QDS的完整集合更好的电流分布。使用放大器两端的宽带抗反射涂层抑制了激光,允许单通传输实验。放大器中的增益动力学由具有外差检测的飞秒泵探针技术测量。使用两个迈克尔逊干涉仪,在Pic秒的时间范围内具有可控延迟,产生多达四个150 FS长的傅立叶限制泵脉冲。在室温下测量增益动力学作为注射电流和激发功率的函数,其在1.3μm处的接地状态(GS)或在1.2μm处的激发态的共振或谐振。图2.示出了在入射光束功率足以瞬时消耗地面群体时(可以观察到增益的完全消耗)时,在一个,两个和四个脉冲训练之后的增益演变(可以观察到增益的完全耗尽(低于1))。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号