【24h】

Mining Trajectory Patterns Using Hidden Markov Models

机译:采用隐马尔可夫模型的挖掘轨迹模式

获取原文

摘要

Many studies of spatiotemporal pattern discovery partition data space into disjoint cells for effective processing. However, the discovery accuracy of the space-partitioning schemes highly depends on space granularity. Moreover, it cannot describe data statistics well when data spreads over not only one but many cells. In this study, we introduce a novel approach which takes advantages of the effectiveness of space-partitioning methods but overcomes those problems. Specifically, we uncover frequent regions where an object frequently visits from its trajectories. This process is unaffected by the space-partitioning problems. We then explain the relationships between the frequent regions and the partitioned cells using trajectory pattern models based on hidden Markov process. Under this approach, an object’s movements are still described by the partitioned cells, however, its patterns are explained by the frequent regions which are more precise. Our experiments show the proposed method is more effective and accurate than existing space-partitioning methods.
机译:许多天空模式发现分区数据空间的研究进入脱节小区以进行有效处理。然而,空间分区方案的发现准确性高度取决于空间粒度。此外,当数据不仅传播一个但许多细胞时,它无法描述数据统计信息。在这项研究中,我们介绍了一种新的方法,该方法采用了空间分区方法的有效性,但克服了这些问题。具体而言,我们发现频繁的区域,其中对象经常从其轨迹访问。该过程不受空段分区问题的影响。然后,我们使用基于隐马尔可夫过程的轨迹模式模型来解释频繁区域与分区单元之间的关系。在这种方法下,分区小区仍然描述对象的运动,然而,其图案由更精确的频繁区域解释。我们的实验表明,所提出的方法比现有的空间分区方法更有效和准确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号