首页> 外文会议>Society of Photo-optical Instrumentation Engineers conference on Advanced photon counting techniques >Single Photon Detector Comparison in a Quantum Key Distribution Link Testbed
【24h】

Single Photon Detector Comparison in a Quantum Key Distribution Link Testbed

机译:量子密钥分布连杆中的单光子探测器比较测试

获取原文

摘要

We provide a direct comparison between the InGaAs avalanche photodiode (APD) and the NbN superconducting single photon detector (SSPD) for applications in fiber-based quantum cryptography. The quantum efficiency and dark count rate were measured for each detector, and used to calculate the quantum bit error rate (QBER) and shared key rate for a QKD link. The results indicate that, despite low quantum efficiency, the speed of the SSPD makes it a superior detector for quantum information applications. Finally, we present results of an initial integration of an SSPD into a receiver node of the DARPA quantum network to perform quantum key distribution. Encoding quantum information on single photons has enabled the realization of a number of unique communication schemes such as the implementation of the BB84 protocol for quantum key distribution and quantum dense coding. Furthermore, the implementation of these schemes using photons at telecommunication wavelengths has permitted their extension to fiber optic networks, drastically increasing the practicality of quantum information processing. To date, the state of the art in commercially available single photon detection at telecommunication wavelengths (1550 nm) has been the thermo-electrically cooled InGaAs avalanche photodiode (APD). The cooled InGaAs APD is generally operated at T = —60°C in the reverse-biased Geiger mode. Though these detectors have been successfully implemented in operating QKD links in optical fiber, the InGaAs APD suffers from afterpulsing effects that limit the key exchange rates. New SPD (single photon detector) technologies based on superconducting materials are emerging that hold tremendous promise for drastically increasing the photon counting rate and eliminating dark noise. The SSPD consists of a NbN thin film (t ~ 5 nm) patterned into a narrow (w ~ 100 nm) microstrip meander that is ~ 500 μm in length. The detector is cooled to T < 4K in a closed cycle refrigeration unit and a bias current I_b is supplied to the device just below the superconducting critical current (I_c). When a photon is incident upon the microstrip superconductivity is broken in the region local to photon absorption and a normal state region is formed in the device. The current passing through the device causes a measurable voltage pulse in the detector that can be amplified and shaped to act as an input for traditional logic circuitry. Due to the unique electronic bandstructure in a superconducting material the intrinsic response time of the device is on the order of picoseconds, so that the repetition rate may be increased above 1 GHz without being susceptible to afterpulsing effects that plague the InGaAs APD. To make a direct comparison between the InGaAs APD and the SSPD both were placed in a SPD characterization testbed to measure quantum efficiency and dark count rate at a variety of bias conditions. The QBER for a QKD link is calculated from the measured parameters and then compared to requirements for a provably secure QKD link. Following detector characterization, one of the nodes of the DARPA Quantum Network operated by BBN Technologies utilized an SSPD in the receiver to transmit key material. The demonstration provides an in situ comparison between the InGaAs APD, normally operated in the BBN link, and the SSPD.
机译:我们在纤维基量子密码中的应用于Ingaas雪崩光电二极管(APD)和NBN超导单光子检测器(SSPD)之间的直接比较。针对每个检测器测量量子效率和暗计数率,并用于计算QKD链路的量子比特错误率(QBET)和共享密钥率。结果表明,尽管量子效率低,但SSPD的速度使其成为量子信息应用的卓越探测器。最后,我们将SSPD的初始集成的结果呈现为DARPA量子网络的接收器节点以执行量子密钥分布。编码单个光子的量子信息已经启用了许多唯一通信方案,例如用于量子密钥分布和量子密集编码的BB84协议的实现。此外,使用电信波长的光子的这些方案的实现允许其扩展到光纤网络,从而大大增加量子信息处理的实用性。迄今为止,在电信波长(1550nm)的市售单光子检测中的现有技术的状态已经是热冷却的Ingaas雪崩光电二极管(APD)。冷却的IngaAS APD通常在T = -60°C中以反向偏置的地革模式操作。虽然这些探测器已经在光纤中操作QKD链路中成功实现,但InGaAS APD遭受了限制关键交换率的后脉冲效果。基于超导材料的新SPD(单光子探测器)技术正在出现巨大的承诺,以急剧增加光子计数率并消除暗噪声。 SSPD由图案化的NBN薄膜(T〜5 nm)组成,该窄(W〜100nm)微带曲折长度为〜500μm。在闭合循环制冷单元中将检测器冷却至T <4K,并且将偏置电流I_B提供给刚刚下方的器件(I_C)。当光子入射时,在微带超导中被破坏在局部到光子吸收的区域中,并且在装置中形成正常状态区域。通过装置的电流使检测器中的可测量电压脉冲可以被放大和成形为用作传统逻辑电路的输入。由于超导材料中的独特的电子带结构,装置的内在响应时间是吡微秒的顺序,使得重复率可以增加1GHz而不容易扰乱InGaAS APD的后脉冲效果。为了在InGaAS APD和SSPD之间进行直接比较,两者都置于SPD表征中,以测量各种偏置条件下的量子效率和暗计数率。 QKD链路的QGET由测量的参数计算,然后与可提供可提供的QKD链路的要求进行比较。在检测器表征之后,由BBN技术操作的DARPA量子网络的一个节点利用接收器中的SSPD来发送关键材料。演示在InGaAS APD之间提供了一个原位比较,通常在BBN链路中操作,以及SSPD。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号