首页> 外文会议>Conference on Device and Process Technologies for Microelectronics, MEMS, and Photonics >Thermal and mechanical responses of the thermomechanical microprobe for high-density storage technology
【24h】

Thermal and mechanical responses of the thermomechanical microprobe for high-density storage technology

机译:热机械微探针的热和机械响应,用于高密度存储技术

获取原文

摘要

This paper investigates the transient heat transfer behavior and doping concentration of the thermomechanical microprobe using the transient finite element method and SUPREM-IV.GS software for the experimental validation. The thermomechanical microprobe is a newly developed high-density data storage technique. Heat management, on the other hand, is an extremely critical issue in high-density data storage application. This study explores the transient heat transfer behavior of the thermomechanical microprobe through measurement and simulation. In order to study this transient heat transfer behavior, a microprobe is fabricated, and the transient finite element method is adopted for optimizing and analyzing the performance of the microprobe. Furthermore, the doping parameter would govern the data writing and reading response of the thermomechanical microprobe. To optimize the microprobe's performance, this paper also utilizes the process simulation software SUPREM-IV.GS as well as the area weighting method to predict the electrical characteristic of the microprobe. The main goal of this research is to develop a ethodology for the required heating/cooling rate to reach the expected temperature which is affected by the different geometric specifications of the cantilever beam structure of the microprobes. Furthermore, this research fabricates the thermomechanical microprobe using complementary metal oxide semiconductor (CMOS)-compatible micromechanical manufacturing technology. The results show that the required time response to reach the designed heating temperature is about a few microseconds for a small-sized heater. Moreover, in terms of temperature cooling status, we find that the larger dimension of a cantilever beam can enhance the heat dissipation from the heater in order for the expected temperature to be reached within the time range of microseconds. In addition, the resistivity of the heater obtained from the simulation prediction based on the SUMPEM-IV.GS and the area weighting method corroborates the experiment data in the literature.
机译:本文使用瞬态有限元方法和Suprem -iv.gs软件研究了热机械微探针的瞬态传热行为和掺杂浓度。热机械微探测器是一种新开发的高密度数据存储技术。另一方面,热管理是高密度数据存储应用中的一个非常关键的问题。本研究通过测量和仿真探讨了热机械微探针的瞬态传热行为。为了研究这种瞬态传热行为,制造微探针,采用瞬态有限元法优化和分析微探针的性能。此外,掺杂参数将控制热机械微探针的数据写入和读取响应。为了优化微探针的性能,本文还利用了过程仿真软件Suprem -iv.gs以及区域加权方法来预测微探针的电特性。该研究的主要目标是为所需的加热/冷却速率开发一个总体学,以达到受微生物的悬臂梁结构的不同几何规格影响的预期温度。此外,该研究使用互补金属氧化物半导体(CMOS)兼容的微机械制造技术来制造热机械微探针。结果表明,对于小型加热器,达到设计的加热温度的所需时间响应约为几微秒。此外,在温度冷却状态方面,我们发现悬臂梁的较大尺寸可以提高加热器的散热,以便在微秒的时间范围内达到预期的温度。另外,基于Sumpem -iv.gs和区域加权方法从模拟预测获得的加热器的电阻率证实了文献中的实验数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号