首页> 外文会议>Intermag Conference >The Origin for Training Effects in Exchange Bias Systems: Frustration and Multiple Anisotropy Axes at the Interface
【24h】

The Origin for Training Effects in Exchange Bias Systems: Frustration and Multiple Anisotropy Axes at the Interface

机译:交换偏置系统中培训效果的起源:界面处的挫折和多个各向异性轴

获取原文

摘要

The interaction of an antiferromagnet with a ferromagnet can establish a unidirectional anisotropy, which is referred to as an exchange bias. Many exchange bias systems show an instability that, after initial field cooling, results in irreversible changes between subsequent hysteresis loops. These field-training effects are suspected to be due to irreversible changes in the magnetic microstructure of the antiferromagnet, but a comprehensive theoretical understanding is still missing. In general one can distinguish two types of training effects. Generally there is an initial dramatic change of the hysteresis loop after the first reversal, and a more gradual change with diminishing exchange bias for subsequent loops after the second hysteresis loop. I will present numerical simulations based on a simple coherent rotation model, which imply that the initial irreversibilities observed between the first and second hysteresis loop are driven by the symmetry of the antiferromagnet [1]. The availability of more than one easy axis in a high symmetry antiferromagnet can give rise to a spin-flop transition during the first field reversal, after which the antiferromagnetic spins are trapped in a metastable configuration. As can be seen in Fig. 1, the calculations show a very pronounced training effect for the case of antiferromagnets with two anisotropy axes, while no training is observed for antiferromagnets with only one anisotropy axis. This explains quite naturally why training effects are only observed for exchange bias systems with high symmetry antiferromagnets, while they are absent for antiferromagnets with uniaxial anisotropy. This simple and universal model reproduces many of the experimentally observed initial training effects in exchange bias systems, such as the change in loop shape and the different domain structures at the two coercive fields during the first hysteresis loop.
机译:反霉素与铁磁性的相互作用可以建立单向各向异性,其被称为交换偏压。许多交换偏置系统显示不稳定性,在初始现场冷却之后,导致后续滞后环之间的不可逆变化。这些现场训练效果被怀疑是由于反霉素的磁性微观结构的不可逆变化,但仍然缺少综合理论理解。一般来说,可以区分两种类型的训练效果。通常,在第一次反转之后,滞后回路的初始初始变化,并且在第二滞后回路之后随后循环的交换偏压减少的更逐渐变化。我将基于简单的相干旋转模型呈现数值模拟,这意味着在第一和第二滞后回路之间观察到的初始不义,由反霉素[1]的对称驱动。高对称性反霉素中的多于一个容易轴的可用性可以在第一场反转期间产生自旋翻转过渡,之后将防冻旋转被捕获在亚稳态配置中。如图1所示。如图1所示,计算为具有两个各向异性轴的反铁磁体的情况显示出非常明显的训练效果,而仅具有一个各向异性轴的反铁磁体未观察到训练。这非常自然地解释了为什么仅观察到具有高对称性反铁磁体的交换偏置系统的培训效果,而它们不存在具有单轴各向异性的反铁磁体。这种简单且通用的模型再现许多实验观察到的交换偏置系统中的初始训练效果,例如在第一滞后环中的两个矫顽磁场处的环形形状和不同畴结构的变化。

著录项

  • 来源
    《Intermag Conference 》|2006年||共1页
  • 会议地点
  • 作者

    A. Hoffmann;

  • 作者单位
  • 会议组织
  • 原文格式 PDF
  • 正文语种
  • 中图分类 O441.2-53;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号