首页> 外文会议>International Conference on Boiling Heat Transfer >LOCAL HEAT FLOW AND TEMPERATURE FLUCTUATIONS IN WALL AND FLUID IN NUCLEATE BOILING SYSTEMS
【24h】

LOCAL HEAT FLOW AND TEMPERATURE FLUCTUATIONS IN WALL AND FLUID IN NUCLEATE BOILING SYSTEMS

机译:核心沸腾系统中的墙壁和液体的局部热流和温度波动

获取原文

摘要

Recent numerical and experimental investigations to improve the understanding of the nucleate boiling heat transfer process mainly concentrate on the description or measurement of local transport phenomena. It is known from these investigations that the interaction between microscale evaporation and macroscale transient heat flow in the wall and the thermal boundary layer is a key aspect for our physical understanding of boiling processes. However reliable quantitative data on the local and transient heat distribution and storage in the heater wall and thermal boundary layer is rare. In this paper we summarize recent developments and present new numerical and experimental results in this specific field of research. A fully transient numerical model has been developed based on a previous quasi stationary model of Kern and Stephan [3]. It allows describing the transient heat and fluid flow during the entire periodic cycle of a growing, detaching and rising bubble including the waiting time between two successive bubbles from a single nucleation site. It contains a multiscale approach ranging from the nanometer to the millimeter scale for the detailed description of the relevant local phenomena. The detailed analysis of the computed transient temperature profiles in wall and fluid gives accurate information about the heat supply, temporal energy storage and evaporation. It is shown that during the bubble growth and detachment period more heat is consumed by evaporation than heat supplied to the overall system. Thus the wall-and liquid thermal boundary layer cool down. After detachment, during the bubble rise period and waiting time, the evaporative heat flow decreases. In this period more heat is supplied to the overall system than consumed by evaporation, thus the wall and liquid thermal boundary layer heat up again. Experimental investigations with high resolution wall temperature measurements underneath a vapor bubble were performed in a micro-g environment and qualitatively confirm these numerical observations.
机译:最近的数值和实验研究改善了核心沸腾传热过程的理解,主要集中在局部运输现象的描述或测量上。从这些调查中众所周知,墙壁和热边界层中微米蒸发和宏观瞬态热流之间的相互作用是我们对沸腾过程的物理理解的关键方面。然而,对局部和瞬态热分布和加热器壁和热边界层的储存具有可靠的定量数据是罕见的。在本文中,我们概述了最近的发展和目前在这一特定研究领域的新数值和实验结果。基于先前的克恩和斯蒂芬的准静止模型开发了一个完全瞬态的数值模型[3]。它允许描述在生长,分离和上升气泡的整个周期性周期期间的瞬态热和流体流动,包括来自单个成核位点的两个连续气泡之间的等待时间。它包含从纳米到毫米比例的多尺度方法,以便有相关的当地现象的详细描述。墙壁和流体中计算的瞬态温度曲线的详细分析提供了有关供热,时间储存和蒸发的准确信息。结果表明,在气泡生长和脱离时期期间,通过蒸发而不是提供给整个系统的热量来消耗更多热量。因此,壁和液体热边界层冷却。在脱离之后,在气泡上升时段和等待时间期间,蒸发热流减少。在该时段中,向整个系统提供更多热量而不是蒸发消耗的总体,因此壁和液体热边界层再次加热。在微g环境下进行具有高分辨率壁温测量的实验研究,并在微g环境下进行,并定性地确认这些数值观察。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号