...
首页> 外文期刊>Heat and mass transfer >Local Heat Flow And Temperature Fluctuations In Wall And Fluid In Nucleate Boiling Systems
【24h】

Local Heat Flow And Temperature Fluctuations In Wall And Fluid In Nucleate Boiling Systems

机译:核沸腾系统中壁和流体中的局部热流和温度波动

获取原文
获取原文并翻译 | 示例
           

摘要

Recent numerical and experimental investigations to improve the understanding of the nucleate boiling heat transfer process mainly concentrate on the description or measurement of local transport phenomena. It is known from these investigations that the interaction between microscale evaporation and macroscale transient heat flow in the wall and the thermal boundary layer is a key aspect for our physical understanding of boiling processes. However reliable quantitative data on the local and transient heat distribution and storage in the heater wall and thermal boundary layer is rare. In this paper we summarize recent developments and present new numerical and experimental results in this specific field of research. A fully transient numerical model has been developed based on a previous quasi stationary model of Kern and Stephan (ASME J Heat Transf 125,1106-1115). It allows describing the transient heat and fluid flow during the entire periodic cycle of a growing, detaching and rising bubble including the waiting time between two successive bubbles from a single nucleation site. It contains a multiscale approach ranging from the nanometer to the millimeter scale for the detailed description of the relevant local phenomena. The detailed analysis of the computed transient temperature profiles in wall and fluid gives accurate information about the heat supply, temporal energy storage and evaporation. It is shown that during the bubble growth and detachment period more heat is consumed by evaporation than heat supplied to the overall system. Thus the wall and liquid thermal boundary layer cool down. After detachment, during the bubble rise period and waiting time,rnthe evaporative heat flow decreases. In this period more heat is supplied to the overall system than consumed by evaporation, thus the wall and liquid thermal boundary layer heat up again. Experimental investigations with high resolution wall temperature measurements underneath a vapor bubble were performed in a micro-g environment and qualitatively confirm these numerical observations.
机译:最近的数值和实验研究,以增进对核沸腾传热过程的理解,主要集中在描述或测量局部传输现象。从这些研究中可以知道,壁和热边界层中的微观蒸发和宏观瞬态热流之间的相互作用是我们对沸腾过程的物理理解的关键方面。但是,很少有关于加热器壁和热边界层中局部和瞬态热分布和存储的可靠定量数据。在本文中,我们总结了最近的发展,并在此特定的研究领域中提供了新的数值和实验结果。基于先前的Kern和Stephan的拟平稳模型(ASME J Heat Transf 125,1106-1115),开发了一个完全瞬态数值模型。它允许描述在一个不断增长,分离和上升的气泡的整个周期内的瞬时热量和流体流动,包括来自单个成核位置的两个连续气泡之间的等待时间。它包含了从纳米级到毫米级的多尺度方法,用于详细描述相关的局部现象。对壁和流体中计算出的瞬态温度曲线进行的详细分析可提供有关热量供应,瞬时能量存储和蒸发的准确信息。结果表明,在气泡生长和分离期间,蒸发消耗的热量多于提供给整个系统的热量。因此,壁和液体热边界层冷却。分离后,在气泡上升期间和等待时间内,蒸发热流减少。在此期间,提供给整个系统的热量多于蒸发所消耗的热量,因此壁和液体热边界层再次变热。在微克环境中进行了在气泡下的高分辨率壁温测量的实验研究,并从质量上证实了这些数值观察结果。

著录项

  • 来源
    《Heat and mass transfer》 |2009年第7期|919-928|共10页
  • 作者

    P. Stephan; T. Fuchs;

  • 作者单位

    Chair of Technical Thermodynamics, University of TechnologyrnDarmstadt, 64287 Darmstadt, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号