【24h】

QUANTUM-DOT LIGHT EMITTING DEVICES AND DISPLAYS

机译:Quantum-Dot发光器件和显示器

获取原文

摘要

The luminescence of inorganic core-shell semiconductor nanocrystal quantum dots (QDs) can be tuned through the visible and near infrared spectral range by changing the size and material of the QDs while preserving a narrowband, gaussian emission spectrum and photoluminescence efficiency of 25%. Organic capping groups, surrounding the QD lumophores, facilitate processing in organic solvents and their incorporation into organic thin film light emitting device (LED) structures. Recent reports have shown that hybrid organic/inorganic QD-LEDs can be fabricated with high brightness and small spectral FWHM, utilizing a phase segregation process which self-assembles QDs onto an organic thin film surface [Coe et al., Nature 420, 800 (2002)]. The phase segregation process can be generally applied to the fabrication of QD-LEDs containing a wide range of particle sizes and materials. QD-LEDs emitting from 540 nm to 1,550 nm have been demonstrated to date, with external quantum efficiencies of thin film light emitters. Organic light emitting devices (OLEDs) have been identified as a dominant new technology poised to realize the next generation of flat panel displays. OLED performance is exemplified by wide viewing angles, high color contrast, and low power consumption as compared to emissive liquid crystal displays. Indeed, internal quantum efficiencies can approach 100% when organic phosphorescent molecules are used as the emitting materials. A significant challenge of today's OLED technology remains the identification and synthesis of organic lumophores compatible with electrically pumped device structures. Only a handful of efficient and long-lived organic phosphors have been incorporated into laboratory devices, while the ongoing research is aimed at the chemical design of new molecules, especially in the blue part of the spectrum. As such, inorganic quantum dots have generated interest in the OLED community as efficient alternative lumophores, whose saturated color emission can be tuned across the visible spectrum. Additionally QD-LEDs provide an accessible platform for investigating physical processes in hybrid organic/inorganic structures.
机译:无机核 - 壳半导体纳米晶纳米晶纳米晶体点(QDS)的发光可以通过改变QD的尺寸和材料,同时保持窄带,高斯发射光谱和光致发光效率为25%,通过可见光和近红外光谱范围进行调谐。有机封盖组,围绕QD荧光树,促进有机溶剂的处理及其掺入有机薄膜发光器件(LED)结构。最近的报道已经表明,混合有机/无机QD-LED可以用高亮度和小光谱FWHM制造,利用将QDS自组装到有机薄膜表面上的相位分离过程[Coe等,自然420,800( 2002)]。相分离过程通常可以应用于含有宽范围粒度和材料的QD-LED的制造。迄今为止迄今为止从540纳米发射到1,550 nm的QD-LED,具有薄膜光发射器的外部量子效率。有机发光器件(OLED)已被确定为主导新技术,以实现下一代平板显示器。与发光液晶显示器相比,OLED性能是宽视角,高颜色对比度和低功耗的例子。实际上,当有机磷光分子用作发射材料时,内部量子效率可以接近100%。今天的OLED技术的重大挑战仍然是与电动泵送器件结构相容的有机荧光树的鉴定和合成。只有少数有效和长寿的有机磷光体已被纳入实验室设备,而正在进行的研究旨在旨在新分子的化学设计,特别是在光谱的蓝色部分中。这样,无机量子点在OLED群落中产生了有效的替代荧光树,其饱和彩色发射可以通过可见光谱进行调谐。另外,QD-LED提供了一种用于调查混合有机/无机结构中物理过程的可访问平台。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号