首页> 外文会议>Society of Petroleum Engineers Annual Technical Conference and Exhibition >Impact of Asphaltene Nanoscience on Understanding Oilfield Reservoirs
【24h】

Impact of Asphaltene Nanoscience on Understanding Oilfield Reservoirs

机译:沥青质纳科技对理解油田水库的影响

获取原文

摘要

Understanding asphaltene gradients and dynamics of fluids in reservoirs had been greatly hindered by the lack of knowledge of asphaltene nanoscience. Gravitational segregation effects on oil composition, so important in reservoir fluids, are unresolvable without knowledge of (asphaltene) particle size in crude oils. Recently, the “modified Yen model” also known as the Yen-Mullins model, has been proposed describing the dominant forms of asphaltenes in crude oils: molecules, nanoaggregates and clusters. This asphaltene nanoscience approach enables development of the first predictive equation of state for asphaltene compositional gradients in reservoirs, the Flory-Huggins-Zuo (FHZ) EoS. This new asphaltene EoS is readily exploited with “downhole fluid analysis” (DFA) on wireline formation testers thereby elucidating important fluid and reservoir complexities. Field studies confirm the applicability of this scientific formalism and DFA technology for evaluating reservoir compartmentalization and especially connectivity issues providing orders of magnitude improvement over tradional static pressure surveys. Moreover, the mechanism of tar mat formation, a long standing puzzle, is largely resolved by our new asphaltene nanoscience model as shown in field studies. In addition, oil columns possessing large disequilibrium gradients of asphaltenes are shown to be amenable to the new FHZ EoS in a straightforward manner. We also examine recent developments in asphaltene science. For example, important interfacial properties of asphaltenes have been resolved recently providing a simple framework to address surface science. At long last, the solid asphaltenes (as with hydrocarbon gases and liquids) are treated with a proper chemical construct and theoretical formalism. New asphaltene science coupled with new DFA technology will yield increasingly powerful benefits in the future.
机译:通过沥青质纳米科学缺乏了解,理解水库中液体液体的渐变和动力学受到了极大的阻碍。对油组合物的引力分离效应在储层流体中如此重要,而不是原油中(沥青质)粒度的知识而无法解决。最近,已经提出了又称Yen-Mullins模型的“改性日元模型”,描述了原油中的沥青质的主要形式:分子,纳米聚糖和簇。这种沥青烯纳米科学方法能够在储存器中的沥青质成分梯度的第一预测方程的发展,储存器中的液体 - Huggins-Zuo(FHZ)EOS。这种新的沥青质EOS易于利用有线形成测试仪上的“井下液体分析”(DFA),从而阐明了重要的流体和储层复杂性。现场研究证实了这种科学形式主义和DFA技术的适用性,用于评估水库分区化,特别是连接问题,提供交易静态压力调查的数量级。此外,焦油垫形成的机制是一种长站拼图,主要由我们的新沥青烯纳米科学模型解决,如现场研究所示。此外,具有大量不平衡梯度的沥青质的油柱被证明以直接的方式可用于新的FHz EOS。我们还研究了最近的沥鹿科学发展。例如,最近已经解决了沥青质的重要界面特性,以提供一个简单的框架来解决方面科学。最后,用适当的化学构建体和理论形式,用适当的化学构造和理论形式进行固体沥青质(如烃类气体)。新的Asphaltene科学与新的DFA技术相结合,将来会产生越来越强大的益处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号