首页> 外文会议>American Society of Mechanical Engineers International Mechanical Engineering Congress and Exposition >EFFECT OF WALL COOLING WITH CONDENSATION ON DEPRESSURIZATION OF A STEAM-PREFILLED CHAMBER
【24h】

EFFECT OF WALL COOLING WITH CONDENSATION ON DEPRESSURIZATION OF A STEAM-PREFILLED CHAMBER

机译:壁冷却与凝结液压预料室减压的影响

获取原文

摘要

Depressurization can be realized by condensing saturated vapor of a pure substance inside a thermodynamically-closed system such as a confined chamber. The depressurization rate depends directly upon the effectiveness of cooling to the condensing vapor. This study is to investigate the transient characteristics of heat and mass transfer during the condensation-controlled depressurization process. Specifically, the objectives of the study include the transient changes in pressure, temperature and their distributions within the chamber. The representations of pressure and temperature in terms of the corresponding in-situ measurements are also of utmost interest. To this end, this study adopts a research methodology of combined modeling-simulation-experiment approaches, including (1) a pseudo-thermodynamics model to provide the limiting characteristics of depressurization and a quick parametric analysis, (2) a fall-field nμmerical simulation to explore the phase non-equilibriμm in momentμm and heat transfer, (3) an experimental system to provide measurements for model validations, and (4) a heat transfer model to interpret the transient relationship between thermocouple measurements and vapor temperatures. Our study shows that the pressure in chamber is almost uniformly distributed, with a non-equilibriμm margin less than 0.4% of the averaged chamber pressure. The vapor temperature distribution, however, can be highly non-uniform. The local vapor temperature is influenced by multiple factors, including nearby vapor condensation, heat conduction and convection from vapor movement, and convective heat transfer from cooling pipe and chamber wall. The transient thermocouple measurements can be significantly deviated from that of vapor, due to the thermal capacity of the thermocouple as well as the thermal radiations from cooling pipe and chamber wall. The deviation margin in temperature measurements can be thermocouple-location sensitive.
机译:可以通过在诸如限制室的热力学封闭的系统内冷凝纯物质的饱和蒸汽来实现抑制化。减压速率直接取决于冷却到冷凝蒸汽的有效性。该研究是研究冷凝控制的减压过程中的热量和传质的瞬态特征。具体地,该研究的目的包括暂态变化的压力,温度及其分布在腔室内的分布。对应于原位测量方面的压力和温度的表示也是最大的兴趣。为此,本研究采用了组合建模 - 仿真 - 实验方法的研究方法,包括(1)伪热力学模型,以提供减压的限制特性和快速参数分析,(2)落场nμmsic仿真为了探讨时段的阶段非平衡μm和传热,(3)一种实验系统,用于提供模型验证的测量和(4)传热模型,以解释热电偶测量和蒸汽温度之间的瞬态关系。我们的研究表明,腔室中的压力几乎均匀分布,非平衡μm裕度小于平均室压的0.4%。然而,蒸汽温度分布可以非常不均匀。局部蒸汽温度受到多种因素的影响,包括附近的蒸汽冷凝,热传导和来自蒸汽运动的对流,以及来自冷却管和室壁的对流热传递。由于热电偶的热容量以及来自冷却管和腔室壁的热辐射,瞬态热电偶测量可以显着偏离蒸汽的偏差。温度测量中的偏差余量可以是热电偶 - 位置敏感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号