首页> 外文期刊>International Journal of Heat and Mass Transfer >Dynamic process modeling on depressurization by cooling-controlled condensation in a closed chamber
【24h】

Dynamic process modeling on depressurization by cooling-controlled condensation in a closed chamber

机译:在密闭腔室中通过冷却控制冷凝进行减压的动态过程建模

获取原文
获取原文并翻译 | 示例
       

摘要

It has long been realized that condensation in a chamber prefilled with condensable vapor leads to chamber depressurization, and the condensation rate can be cooling controlled. While the final state can be reasonably estimated based on the thermodynamic equilibrium, the dynamic process of depressurization is not only transient but also in thermal non-equilibrium. This transient and non-equilibrium characteristics, mainly governed by the rate of condensation, has not been satisfactorily modeled, which is due to the complicated coupling mechanisms of heat and mass transfer during the condensation, the presence of non-condensable gas (NCG) within vapor, as well as the complex geometry and properties of chamber and cooling device involved. In this paper, we have conducted an experimental study on depressurization by steam condensation onto an internal cooling coil in a steam-prefilled closed chamber. To reveal various parametric effects on the depressurization process, a parametric model consisting of a set of coupled ordinary differential equations has been established, with some simplified assumptions including lumped heat capacity sub-models for chamber walls, cooling coils and the gas phase. To further explore the thermal non-equilibrium characteristics during the process, a full-field and transient simulation of computational fluid dynamics (CFD) is also conducted using FLUENT with user-defined function (UDF) on boundary of condensation. Both parametric and CFD models consider the existence of NCG that is pre-mixed with the vapor as impurity. By comparison with the experimental measurements, both models reasonably predict the dynamic and asymptotic characteristics of depressurization with time. The CFD simulation indicates an almost instant equilibrium in pressure within the chamber and yet non-equilibrium in temperature with noticeable temperature gradients over the gas phase. The simplified parametric model gives quick predictions of some major parametric effects (e.g., vapor purity, coolant flow rate, and vessel volume) on the rate of depressurization. The detailed mechanistic understanding, gained from proposed models, provides insights essential to the optimized design and operation of the depressurization by cooling-controlled condensation.
机译:早已认识到,在预先充满可冷凝蒸气的腔室中的冷凝导致腔室减压,并且可以控制冷却冷凝率。虽然可以根据热力学平衡合理地估算最终状态,但降压的动态过程不仅是瞬态的,而且还处于热非平衡状态。主要由冷凝速率控制的这种瞬态和非平衡特性尚未令人满意地建模,这是由于冷凝过程中传热和传质的复杂耦合机制,内部存在不可冷凝气体(NCG)所致。蒸汽以及所涉及的腔室和冷却装置的复杂几何形状和特性。在本文中,我们进行了一项实验研究,该实验是通过在预装蒸汽的密闭腔室中将蒸汽冷凝到内部冷却盘管上来进行减压的。为了揭示对降压过程的各种参数影响,已经建立了由一组耦合的常微分方程组成的参数模型,并带有一些简化的假设,包括箱壁,冷却盘管和气相的集总热容量子模型。为了进一步探索过程中的热非平衡特性,还使用了带有用户定义函数(UDF)的FLUENT在凝结边界上进行了计算流体动力学(CFD)的全场和瞬态模拟。参数模型和CFD模型都考虑了NCG的存在,该NCG已与蒸汽预混作为杂质。通过与实验测量值的比较,两个模型都可以合理地预测减压随时间的动态和渐近特性。 CFD模拟表明,腔室内的压力几乎立即达到平衡,而在气相中温度梯度明显的情况下,温度却没有达到平衡。简化的参数模型可快速预测降压速率的一些主要参数影响(例如,蒸气纯度,冷却剂流速和容器体积)。从建议的模型中获得的详细机械理解,为通过冷却控制的冷凝进行减压的优化设计和操作提供了必不可少的见解。

著录项

  • 来源
    《International Journal of Heat and Mass Transfer》 |2014年第11期|330-340|共11页
  • 作者单位

    Department of Mechanical & Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA;

    Department of Mechanical & Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA;

    Department of Mechanical & Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA;

    Department of Mechanical & Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA;

    Environmental Control Systems, Boeing Commercial Airplanes, Seattle, WA 98124, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Depressurization; Condensation; Non-condensable gas; Parametric model; CFD;

    机译:减压;缩合;不可凝气体;参数模型差价合约;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号