首页> 外文会议>Heat Transfer Conference >EXPLORATION OF UNSTEADY SPRAY COOLING FOR HIGH POWER ELECTRONICS AT MICROGRAVITY USING NASA GLENN'S DROP TOWER
【24h】

EXPLORATION OF UNSTEADY SPRAY COOLING FOR HIGH POWER ELECTRONICS AT MICROGRAVITY USING NASA GLENN'S DROP TOWER

机译:利用NASA Glenn's Drop Tower探讨高功率电子产品的高功率电子产品

获取原文

摘要

At present, there is little understanding of the application of spray cooling to electronics in the microgravity environment. Typically in closed cycle terrestrial spray cooling systems, since not all of the liquid impinging on a hot substrate is evaporated, some residual liquid is separated from its vapor component by gravity and returned to the pump. This technique of phase separation is not available to spacecraft designers. Methods to predict spray cooling performance for ground systems do exist, but they are absent for the space environment. Particularly for NASA spacecraft, there is a need to design spacecraft that use high power laser systems and other systems that use evaporative spray cooling in microgravity. Such knowledge is very important for the performance and life of the device. Reliable analytical methods of predicting thermal response of a spray cooled substrate when considering a transient heat load, such as that found during start up and shut down of a space-based laser or other high heat flux electronics, do not exist. Our goal was to use NASA Glenn's 2.2 second drop tower to investigate unsteady heat transfer at low Bond numbers and residual fluid behavior in spray cooling. The work contrasts other experiments aboard the NASA Glenn KC-135 low gravity aircraft [1]. Our future plans are to continue the experimental work and include the use of the NASA Glenn 5 second drop tower. This paper will report on some preliminary results of an interesting experimental study performed at NASA Glenn in the summer of 2004. The high speed camera and specially-designed "S.L.O.B." drop rig provided video and data to assess the fluid management problems that arise in a microgravity spray environment, for both heated and unheated cases. The data show unexpected residual fluid management issues, such as the development of multiple spherical liquid globs, with apparent ordered and repeatable geometry, at the point of impact. The results of these experiments provide direction for further investigation in the future.
机译:目前,有喷雾冷却至电子在微重力环境的应用程序的了解甚少。典型地,在封闭循环喷雾地面冷却系统,因为并非所有的热点基板上的液体撞击被蒸发,一些残余的液体从通过重力其蒸气组分分离并返回到泵。相分离的这种技术不能用于宇宙飞船设计师。方法来预测地面系统确实存在喷淋冷却性能,但它们缺乏对空间环境。特别是对于NASA航天器,有必要使用高功率激光系统和其他系统,其使用蒸发喷雾在微重力冷却设计的航天器。这样的知识是设备的性能和寿命非常重要。考虑瞬态热负荷时,如所发现预测的喷雾的热响应的可靠的分析方法冷却基片期间启动和关闭基于空间的激光或其他高热通量电子下来,不存在。我们的目标是利用美国航空航天局格伦的2.2秒落塔,调查在低债券数量和喷雾残留的液体冷却行为非稳态传热。工作对比其它实验搭乘NASA格伦KC-135低重力飞机[1]。我们未来的计划是继续进行试点工作,包括使用美国宇航局格伦5秒降塔。本文将在2004年夏天在美国宇航局格伦进行了一个有趣的实验研究的一些初步结果报告的高速摄像机和特别设计的“S.L.O.B.”降台提供的视频和数据,以评估在微重力环境喷雾中出现的流体管理的问题,对于加热和不加热的情况下。数据显示意想不到的残余流体管理问题,如多个球形液体水珠的发展,具有明显的有序的和重复的几何形状,在撞击点。这些实验的结果为今后进一步研究的方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号