首页> 外文会议>Heat Transfer Conference >THERMAL CONDUCTION PHENOMENA IN ADVANCED INTERFACE MATERIALS FOR ELECTRONICS COOLING
【24h】

THERMAL CONDUCTION PHENOMENA IN ADVANCED INTERFACE MATERIALS FOR ELECTRONICS COOLING

机译:电子冷却先进界面材料中的热传导现象

获取原文

摘要

Thermal resistances at packaging interfaces are occupying a larger portion of the overall thermal resistance from a semiconductor die to ambient. Substantial improvement of the performance of thermal interface materials (TIMs) is required to achieve effective electronic cooling. This report is a brief review of the current status of TIM research. Particular focus is given to the fundamental understanding of heat conduction phenomena in polymer-based TIM composites at packaging interfaces in thin-film form. Promising nanostructured TIMs for future applications are also discussed. Increasing chip power dissipation requires lower thermal resistances at the interfaces of electronic packaging. These resistances govern the effectiveness of heat conduction from the semiconductor die to its heat sink, and eventually limit the performance of any heat sink, from conventional fin-fan structures, to advanced heat sinks such as heat pipes [1] and microchannels [2]. To reduce the interface resistances, compliant heat conductive thin layers are widely used between the semiconductor die and its cooling components. These thin layers are thermal interface materials (TIMs) (Recent reviews [3, 4]). It should be noted that the formation of the packaging interface resistances is not only due to the roughness of the contacting surfaces, but is also caused by the thermal expansion mismatch between different components. Advanced techniques (e.g. CMP) nowadays can polish copper/silicon surfaces at an atomic level, and the techniques of direct copper-to-copper and copper-to-silicon bonding are also available. However, these techniques cannot replace the use of TIMs. Thermal expansion mismatch is the primary concern along with cost. Under common working conditions, the warping action of a copper heat spreader, due to the thermal expansion mismatch, can form a gap in a size of 10 μm or more between the heat spreader and the silicon die. This gap must be filled with compliant and heat conductive materials, i.e. TIMs, to facilitate effective heat dissipation from the semiconductor die.
机译:封装接口处的热电阻占据从半导体管芯到环境的较大部分的总热阻。需要大大提高热界面材料的性能(TIMS)来实现有效的电子冷却。本报告简要介绍了蒂姆研究现状。特定于薄膜形式的包装界面在基于聚合物的TIM复合材料中对热传导现象的基本理解。还讨论了未来应用的承诺纳米结构。增加芯片功率耗散需要在电子包装的界面处较低的热阻。这些电阻控制从半导体管芯到其散热器的热传导的有效性,最终将任何散热器的性能限制在传统的翅片风扇结构中,以诸如热管[1]和微通道的先进散热器[2] 。为了降低界面电阻,柔顺的导热薄层广泛使用在半导体管芯和其冷却部件之间。这些薄层是热界面材料(TIMS)(近期点评[3,4])。应当注意,包装界面电阻的形成不仅是由于接触表面的粗糙度,而且还由不同部件之间的热膨胀不匹配引起的。如今,先进的技术(例如CMP)可以在原子水平处抛光铜/硅表面,并且还可提供直接铜 - 铜和铜硅粘合的技术。但是,这些技术无法取代TIMS的使用。热膨胀不匹配是主要关注的同时。在常见的工作条件下,由于热膨胀不匹配,铜散热器的翘曲作用可以在散热器和硅模具之间形成10μm或更大的间隙。该间隙必须填充有柔顺和导热材料,即TIMS,以便于从半导体管芯有效的散热。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号