首页> 外文会议>World Tribology Congress >SOME ANALYTICAL APPROXIMATIONS AND NUMERICAL SOLUTIONS OF EHL PROBLEMS FOR NON-NEWTONIAN FLUIDS FATIGUE
【24h】

SOME ANALYTICAL APPROXIMATIONS AND NUMERICAL SOLUTIONS OF EHL PROBLEMS FOR NON-NEWTONIAN FLUIDS FATIGUE

机译:非牛顿流体疲劳的EHL问题的一些分析近似和数值解

获取原文

摘要

Plane steady isothermal and non-isothermal EHL problems for non-Newtonian lubricants in a line contact are considered. Two cases of lubricant rheologies are studied. Namely, lubricants for which (a) the shear stress is any explicitly given nonlinear function of the shear strain and (b) the shear strain is any explicitly given nonlinear function of the shear stress are analyzed. The isothermal EHL problem is reduced to solution of a nonlinear equation for the sliding shear stress f, generalized Reynolds equation for pressure p, and the equation for gap h as well as the classic balance and boundary conditions. The non-isothermal EHL problem is reduced to solution of the above mentioned nonlinear equations and the nonlinear equations for temperatures of the lubricant T and of the contact surfaces T{sub}(w1) and T{sub}(w2). The EHL problems are considered in the case of heavily loaded contact when the rolling shear stress in lubricant is much smaller than the lubricant sliding shear stress [1-7]. Therefore, the problems contain a small parameter represented by the ratio of the characteristic rolling and sliding shear stresses. That leads to the opportunity to use the perturbation methods for simplifying the EHL problem formulations. In the isothermal case using the perturbation methods an analytical two-term asymptotic expression for the sliding shear stress f as a function of pressure p, gap h, lubricant temperature T, and lubrication exit film thickness h{sub}e is obtained [2-6]. In the non-isothermal case using the perturbation methods analytical two-term solutions for the sliding shear stress f and the lubricant temperature T are obtained [2,3,7]. These two-term solutions for the temperature T are used to simplify the integral equations for the surface temperatures T{sub}(w1) and T{sub}(w2) and to obtain the corresponding two-term perturbation solutions for T{sub}(w1) and T{sub}(w2). Furthermore, the two-term solutions for f and T are used to simplify the generalized Reynolds equation and to reduce it to the form similar to the one in the isothermal case [2,3,7]. The simplified EHL problems that include the reduced Reynolds equations and the gap equation are analyzed asymptotically [3-8] and solved numerically for some specific lubricant rheologies such as the Newtonian, the Ostwald-de Waele ("power law"), and the Reiner-Philippoff-Carreau models. The asymptotic analysis of the simplified EHL problems is based on the fact that the simplified EHL problem formulation contains a small dimensionless parameter such as the reciprocal of the product of the viscosity pressure coefficient and the Hertzian pressure and/or dimensioless speed-loading parameter. The unified method of obtaining formulas for lubricant film thickness for different loading regimes including starved and fully flooded conditions is proposed. Some analytical formulas for lubricant film thickness and shear stress in a heavily loaded contact are obtained [8]. These formulas depend on both the lubricant rheology and the dependence of the lubricant viscosity on pressure and temperature. The discussion of the way the pressure viscosity coefficient should be chosen is provided. These methods and formulas are specified for some examples of lubricants with non-Newtonian rheologies. The dependence of the film thickness on lubricant rheology and problem parameters is analyzed.
机译:平面稳定等温的和非等温EHL问题对于以线接触的非牛顿润滑剂被考虑。润滑剂的流变学的两种情况进行了研究。即,润滑剂,其中(a)的剪切应力是剪切应变和(b)的剪切应变是剪切应力的任何显式地给出的非线性函数进行了分析的任何明确给出的非线性函数。等温EHL问题简化为用于滑动的剪切应力为f的非线性方程的解,广义雷诺方程为压力p,和用于间隙h以及经典平衡和边界条件的方程。非等温EHL问题减小到上述非线性方程和非线性方程组的解用于润滑剂的T温度和接触面Ť{子}(W1)和T {子}(W2)。的EHL问题在高负载接触的情况下考虑时在润滑剂中的滚动的剪切应力大于润滑剂滑动剪切应力[1-7]小得多。因此,存在的问题包含由特征轧制的比率和滑动的剪切应力表示的小参数。这导致了机会,利用摄动方法简化EHL问题的配方。在使用微扰方法用于滑动剪切应力F为压力p的函数,间隙h,润滑剂温度T,和润滑出口膜厚h的分析两术语渐近表达等温情况下,获得{子} E [2- 6]。在使用微扰方法分析两术语解决方案用于滑动剪切应力f和润滑剂温度T的非等温情况下,获得[2,3,7]。这些对于温度T两任解决方案被用于简化的表面内的温度T {子}(W1)和T {子}(W2)的积分方程并获得相应的两任扰动的解决方案对于T {子} (W1)和T {子}(W2)。此外,适用于f和T两个长期的解决办法用于简化广义雷诺方程,并将其降低到类似于一个在等温情况下[2,3,7]的形式。包括减小的雷诺方程式和间隙方程简化EHL问题渐近分析[3-8]和数值求解对于一些特定的润滑剂流变学如牛顿,奥斯特瓦尔德-DE Waele的(“幂律”),并且莱纳-Philippoff-的Carreau模型。的简化的EHL问题渐近分析是基于简化的EHL问题制剂包含少量无量纲参数的事实,如粘度压力系数的乘积的倒数和赫兹压力和/或速度dimensioless加载参数。获得用于润滑剂的膜厚为不同的加载机制包括饥饿和完全淹没条件公式的统一方法,提出了获得用于在重负载接触的润滑膜厚度和剪切应力一些解析公式[8]。这些公式取决于润滑剂流变和润滑剂粘度对压力和温度的依赖关系两者。的设置应被选择的压力粘度系数的方式的讨论。这些方法和公式用于与非牛顿流变性的润滑剂的一些实例中指定。关于润滑剂流变学和问题参数的膜厚度的依赖关系进行了分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号