首页> 外文会议>SEM Annual Conference and Exposition on Experimental and Applied Mechanics >Nanomechanical Behavior of Individual Polymer Micro/nano-structures Using a Novel Characterization Device
【24h】

Nanomechanical Behavior of Individual Polymer Micro/nano-structures Using a Novel Characterization Device

机译:使用新型表征装置的个体聚合物微/纳米结构的纳米力学行为

获取原文

摘要

The nanomechanical characterization of an individual nanostructure involves complexities related to their positioning, alignment and attachment to probes. Several ingenious experimental techniques have been proposed and implemented in the recent past to understand the nanomechanical behavior of individual nanostructures [1],[2]. This paper reports the development of a novel nanomechanical characterization device that enables independent measurements of both load and displacement history with microNewton force and nanometer displacement resolution. Moreover, the device is well suited for in-situ testing with inside a SEM/FIB, that allows continuous high resolution imaging during nanomechanical straining. The device (Fig. 1a) comprises of two main parts: (a) a commercially available three-plate capacitive transducer (Hysitron, Inc) that serves both as an actuator and a force sensor; and (b) a nanomanipulator (Kliendiek MM3A) that facilitates transportation and positioning of the nanoscale structures with nanoprecision. Electrospun polyaniline fibers, ~1μm diameter were utilized for nanomechanical characterization. An individual polyaniline microfiber was isolated from a non-woven sheet of electrospun polyaniline microfibers by employing the Kleindiek nanomanipulator with in a dual beam FIB/SEM. One end of the sample was then micro-welded to the nanomanipulator Pt/Ir probe tip by depositing platinum using the EBID/IBID process in conjuction with a micro-delivery gas injection system that can create a local platinum rich precursor gas environment. The microfiber specimen was then either pulled from the substrate or cut to the desired length using the ion beam. The other end thus obtained was then transported to the actuator probe tip stationed on the force transducer, aligned parallel to the loading axis and then spot welded onto the actuator probe tip using the IBID process (Fig. 1,b).
机译:单个纳米结构的纳米力学表征涉及与其定位,对准和附着与探针相关的复杂性。在近期过去已经提出了几种巧妙的实验技术,以了解单个纳米结构的纳米机械行为[1],[2]。本文报告了一种新型纳米机械表征装置的开发,其能够使用微酮强制和纳米位移分辨率独立测量负载和位移历史。此外,该器件非常适用于在SEM / FIB内部的原位测试,其允许在纳米机械紧张期间连续的高分辨率成像。该装置(图1A)包括两个主要部分:(a)市售的三板电容式换能器(Hysitron,Inc),其用作致动器和力传感器; (b)纳米罐(kliendiek mm3a),便于用纳米折叠运输和定位纳米级结构。电纺多亚胺纤维,直径〜1μm直径用于纳米机械表征。通过用在双梁Fib / SEM中采用Kleindiek纳米操纵器,从电纺丝微纤维的非织造片微纤维中分离单独的聚苯胺微纤维。然后将样品的一端通过使用EBID / IBID工艺在与微递送气体注射系统的连体上使用EBID / IBID工艺进行微焊接到纳米抑制仪Pt / IR探针尖端,该微递送气体注入系统可以产生富含铂富棱镜的前体气体环境。然后使用离子束从基板中拉出微纤维样品,或者使用离子束切割到所需的长度。然后将如此获得的另一个端部被输送到放置在力换能器上的致动器探针尖端,与装载轴平行对齐,然后使用IBID处理点焊接到致动器探针尖端上(图1,B)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号