【24h】

Molecular Dissipation Phenomenon of Sliding Friction in Polymers

机译:聚合物中滑动摩擦的分子耗散现象

获取原文

摘要

The issue of interpreting sliding friction in terms of intrinsic material properties, as opposed to extrinsic tribological attributes, dates as far back as the 1960s, where Grosch [1] and Ludema and Tabor [2] attempted to deduce intrinsic properties of rubbery materials from friction force-velocity isotherms. By illuminating friction from a rheological perspective, the focus from the molecular adhesive process of separating surfaces involving molecular 'bond ruptures' at the interface, was shifted towards an intrinsic deformation phenomenon within the soft polymer matrix, if a hard probing surface was used. Grosh [1] showed that temperature and velocity dependent friction can be expressed for rubber material with a single master curve, known as the Williams, Landel and Ferry superposition principle. Thereby, the segmental relaxation of the polymer chain above the glass transition was found to be a critical mode for friction dissipation [1.2]. Recent nanoscale experiment involving scanning force microscopy (SFM), showed that also other relaxations within the polymer can be activated during frictional sliding [3]. In this paper, we will discuss specific modes of frictional dissipation process in thin polymer film systems and address issues of material constraints and critical relaxation properties. We will show that both the energetics involved in frictional dissipation and the length scale over which the energy is dissipated can be directly linked to molecular relaxation processes.
机译:在内在物质性质方面解释滑动摩擦的问题,而不是外在的摩擦学属性,日期为20世纪60年代,其中Grosch [1]和Ludema和塔博尔[2]试图推测橡胶材料的内在性质免于摩擦力量速度等温线。通过从流变角度照射摩擦,如果使用硬质探测表面,则涉及涉及分子'粘合破裂'的分离表面的分子粘合过程的焦点。如果使用了硬质探测表面,则朝向软聚合物基质内的内在变形现象。 Groosh [1]显示温度和速度依赖性摩擦可以用单一主曲线表示橡胶材料,称为威廉姆斯,岸上,渡轮和渡轮叠加原理。由此,发现玻璃化转变高于玻璃化转变的节段弛豫是摩擦耗散的临界模式[1.2]。最近涉及扫描力显微镜(SFM)的纳米级实验表明,在摩擦滑动期间也可以在聚合物中的其他松弛[3]。在本文中,我们将讨论薄聚合物薄膜系统中摩擦耗散过程的具体模式以及材料限制和临界松弛性能的地址问题。我们将表明,摩擦耗散的能量和能量耗散的长度尺度都可以直接与分子弛豫过程直接相关。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号