首页> 外文会议>American Geophysical Union >Isotopic Constraints on Biogeochemical Cycling of Fe
【24h】

Isotopic Constraints on Biogeochemical Cycling of Fe

机译:对Fe的生物地球化学循环的同位素限制

获取原文

摘要

Cycling of redox-sensitive elements such as Fe is affected by not only ambient Eh-pH conditions, but also by a significant biomass that may derive energy through changes in redox state (e.g., Nealson 1983; Lovely et al. 1987; Myers and Nealson 1988; Ghiorse 1989). The evidence now seems overwhelming that biological processing of redox-sensitive metals is likely to be the rule in surface- and near-surface environments, rather than the exception. The Fe redox cycle of the Earth fundamentally begins with tectonic processes, where "juvenile" crust (high-temperature metamorphic and igneous rocks) that contains Fe which is largely in the divalent state is continuously exposed on the surface. If the surface is oxidizing, which is likely for the Earth over at least the last two billion years (e.g., Holland 1984), exposure of large quantities of Fe(II) at the surface represents a tremendous redox disequilibrium. Oxidation of Fe(II) early in Earth's history may have occurred through increases in ambient O_2 contents through photosynthesis (e.g., Cloud 1965, 1968), UV-photo oxidation (e.g., Braterman and Cairns-Smith 1987), or anaerobic photosynthetic Fe(II) oxidation (e.g., Hartman 1984; Widdel et al. 1993; Ehrenreich and Widdel 1994). Iron oxides produced by oxidation of Fe(II) represent an important sink for Fe released by terrestrial weathering processes, which will generally be quite reactive. In turn, dissimilatory microbial reduction of ferric oxides, coupled to oxidation of organic carbon and/or H_2, is an important process by which Fe(III) is reduced in both modern and ancient sedimentary environments (Lovley 1991; Nealson and Saffarini 1994). Recent microbiological evidence (Vargas et al.
机译:诸如Fe的氧化还原元素的循环受到环境EH-pH条件的影响,也受到可能通过氧化还原状态的变化产生能量的重要生物量(例如,Nealson 1983; Lovely等,1987; Myers和Nealson; 1988年;痛苦1989)。现在的证据似乎压倒了氧化还原敏感金属的生物处理可能是表面和近表面环境的规则,而不是例外。地球的Fe氧化还原循环从根本上开始,在构造过程中,其中含有含有在二价状态的Fe的“少年”地壳(高温变质和火岩)在表面上连续地暴露。如果表面氧化,这可能在最近20亿年(例如,荷兰1984)中,表面的暴露在表面上的大量Fe(II)代表着巨大的氧化还原性不稳定。通过光合作用(例如,云1965,1968),紫外线氧化(例如,Broterman和Cairns-Smith 1987),可以通过环境O_2内容的氧化历史早期氧化(II)的氧化可能发生了通过环境O_2内容的增加(例如,Broterman和Cairns-Smith 1987),或厌氧光合作用Fe( ii)氧化(例如,Hartman 1984; Widdel等人1993; Ehrenreich和Widdel 1994)。 Fe(II)氧化生产的氧化铁代表了通过陆地风化过程释放的Fe的重要汇,这通常是相当的反应性。反过来,与有机碳和/或H_2氧化相结合的铁氧化物的含氧微生物还原是在现代和古老的沉积环境中减少Fe(III)的重要过程(Lovley 1991; Nealson和Saffarini 1994)。最近的微生物证据(Vargas等人。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号