首页> 外文会议>American Chemical Society National Meeting >SUPERHALOGENS AND THEIR ROLE IN STORING HYDROGEN
【24h】

SUPERHALOGENS AND THEIR ROLE IN STORING HYDROGEN

机译:超卤素及其在储存氢气中的作用

获取原文

摘要

The success of a hydrogen economy depends on our ability to find a material suitable for storing hydrogen. For application in the mobile industry this material must be able to store hydrogen with large gravimetric and volumetric density and operate at near ambient pressure and temperature. Unfortunately, such materials do not exist. Those that can store hydrogen in large quantities either bind to hydrogen strongly so that it is hard for hydrogen to desorb or bind to hydrogen weakly so that it desorbs at low temperatures [1]. To overcome these difficulties, it will be ideal to find materials that are light weight and the bond strength of hydrogen is intermediate between physisorption and chemisorption. Two mechanisms for this kind of bonding was suggested more than twenty years ago by Kubas [2] and hena and coworkers [3]. According to the Kubas mechanism, a transition metal atom can bind to hydrogen quasi-molecularly where the donation of electrons from the H2 molecule to the unfilled d-orbitals of the transition metal atom and back donation to the antibonding orbital of the H2 molecule leaves the H-H bond slightly stretched and bind energy of the order of 0. eV/H2 molecule. The mechanism proposed by Jena and coworkers, on the other hand, accomplishes the same task through the use of a metal cation which binds to H2 molecule through charge polarization. Much work in the past few years have concentrated in finding the suitable metal atom to dope. In this work I will discuss a class of materials that are composed of alkali metal cations compensated by the superhalogen anions for storing hydrogen. For the later, we use borane derivatives. In particular, Li2(B6H6) is able to reversibly store up to 12 wt % hydrogen.
机译:氢气经济的成功取决于我们找到适合储存氢的材料的能力。对于移动行业的应用,这种材料必须能够将氢气储存氢,具有大的重量和体积密度,并在接近环境压力和温度下运行。不幸的是,这些材料不存在。那些可以将氢气储存氢的那些强烈地粘合到氢,使得氢气难以脱脂或结合氢气,使得其在低温下解吸[1]。为了克服这些困难,可以理想的是找到重量轻的材料,氢的粘合强度是地理吸附和化学的中间体。这类粘接的两种机制在克库斯[2]和赫内斯和同事[3]中提出了二十多年前。根据Kubas机构,过渡金属原子可以结合到氢准分子,其中来自H2分子的电子的捐赠给过渡金属原子和背面捐赠的未填充d轨道的反键轨道的H2分子叶子的HH键略微拉伸和0.1电子伏特/ H2分子的顺序的结合能量。另一方面,耶拿和同事提出的机制通过使用通过电荷极化结合H2分子的金属阳离子来完成相同的任务。在过去几年中有很多工作集中在寻找合适的金属原子来涂料。在这项工作中,我将讨论一类由由过卤素阴离子补偿的碱金属阳离子组成,用于储存氢气。对于后来,我们使用硼烷衍生物。特别地,Li2(B6H6)能够可逆地储存高达12wt%的氢。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号