...
首页> 外文期刊>American Chemical Society, Division of Fuel Chemistry, Preprints >SUPERHALOGENS AND THEIR ROLE IN STORING HYDROGEN
【24h】

SUPERHALOGENS AND THEIR ROLE IN STORING HYDROGEN

机译:超级卤素及其在储氢中的作用

获取原文
获取原文并翻译 | 示例

摘要

The success of a hydrogen economy depends on our ability to find a material suitable for storing hydrogen. For application in the mobile industry this material must be able to store hydrogen with large gravimetric and volumetric density and operate at near ambient pressure and temperature. Unfortunately, such materials do not exist. Those that can store hydrogen in large quantities either bind to hydrogen strongly so that it is hard for hydrogen to desorb or bind to hydrogen weakly so that it desorbs at low temperatures [1]. To overcome these difficulties, it will be ideal to find materials that are light weight and the bond strength of hydrogen is intermediate between physisorption and chemisorption. Two mechanisms for this kind of bonding was suggested more than twenty years ago by Kubas [2] and hena and coworkers [3]. According to the Kubas mechanism, a transition metal atom can bind to hydrogen quasi-molecularly where the donation of electrons from the H2 molecule to the unfilled d-orbitals of the transition metal atom and back donation to the antibonding orbital of the H2 molecule leaves the H-H bond slightly stretched and bind energy of the order of 0.5 eV/H2 molecule. The mechanism proposed by Jena and coworkers, on the other hand, accomplishes the same task through the use of a metal cation which binds to H2 molecule through charge polarization. Much work in the past few years have concentrated in finding the suitable metal atom to dope. In this work I will discuss a class of materials that are composed of alkali metal cations compensated by the superhalogen anions for storing hydrogen. For the later, we use borane derivatives. In particular, Li2(B6H6) is able to reversibly store up to 12 wt % hydrogen.
机译:氢经济的成功取决于我们找到适合储存氢的材料的能力。为了在移动行业中应用,这种材料必须能够以大的重量和体积密度存储氢,并能在接近环境压力和温度的条件下工作。不幸的是,这种材料不存在。那些可以大量储存氢的氢要么与氢牢固结合,以致氢难以解吸,要么与氢结合较弱,从而在低温下解吸[1]。为了克服这些困难,理想的是找到重量轻并且氢的结合强度介于物理吸附和化学吸附之间的材料。二十多年前,Kubas [2]以及hena和同事[3]提出了两种建立这种联系的机制。根据Kubas机理,过渡金属原子可以与氢分子准分子结合,在那里,H2分子的电子给与过渡金属原子的未填充d轨道,向H2分子的反键轨道提供的反向电子离开氢。 HH键略微拉伸,并结合大约0.5 eV / H2分子的能量。另一方面,耶拿及其同事提出的机制通过使用金属阳离子来完成相同的任务,该金属阳离子通过电荷极化与H2分子结合。过去几年中的许多工作都集中在寻找合适的金属原子进行掺杂。在这项工作中,我将讨论一类由碱金属阳离子组成的材料,这些碱金属阳离子由超卤素阴离子补偿以存储氢。对于以后,我们使用硼烷衍生物。特别地,Li 2(B 6 H 6)能够可逆地存储高达12重量%的氢。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号