首页> 外文会议>Conference on Tuning the Optical Response of Photonic Bandgap Structures >Strain-tunable Photonic Band Gap Microcavity Waveguides in Silicon at 1.55 μm
【24h】

Strain-tunable Photonic Band Gap Microcavity Waveguides in Silicon at 1.55 μm

机译:在1.55μm的硅中应变可调谐光子带隙微腔波导

获取原文

摘要

The majority of photonic crystals developed till-date are not dynamically tunable, especially in silicon-based structures. Dynamic tunability is required not only for reconfiguration of the optical characteristics based on user-demand, but also for compensation against external disturbances and relaxation of tight device fabrication tolerances. Recent developments in photonic crystals have suggested interesting possibilities for static small-strain modulations to affect the optical characteristics, including a proposal for dynamic strain-tunability. Here we report the theoretical analysis, device fabrication, and experimental measurements of tunable silicon photonic band gap microcavities in optical waveguides, through direct application of dynamic strain to the periodic structures. The device concept consists of embedding the microcavity waveguide on a deformable SiO_2 membrane. The membrane is strained through integrated thin-film piezoelectric microactuators. We show a 1.54 nm shift in cavity, resonances at 1.56 μm wavelengths for an applied piezoelectric strain of 0.04%. This is in excellent agreement with our modeling, predicted through first-order semi-analytical perturbation theory and finite-difference time-domain calculations. The measured microcavity transmission shows resonances between 1.55 to 1.57 μm, with Q factors ranging from 159 to 280. For operation at infrared wavelengths, we integrate X-ray and electron-beam lithography (for critical 100 nm feature sizes) with thin-film piezoelectric surface rnicromachining. This level of integration permits realizable silicon-based photonic chip devices, such as high-density optical filters and spontaneous-emission enhancement devices with tunable configurations.
机译:大多数光子晶体到目前为止,尤其是在基于硅的结构中的动态调谐。不仅需要基于用户需求的光学特性来重新配置动态可调性,而且还需要用于对外部干扰的补偿和紧密的装置制造公差的放松。光子晶体的最新发展已经提出了静态小型应变调制的有趣可能性,以影响光学特性,包括用于动态应变可调性的提议。在这里,我们通过直接应用动态应变对周期结构来报告光波导中可调硅光子带隙微腔的理论分析,装置制造和实验测量。设备概念包括将微腔波导嵌入可变形的SiO_2膜上。膜通过集成薄膜压电微致动器应变。我们在腔体中显示1.54nm偏移,施加的压电菌株为0.04%的施加压电菌株的1.56μm波长的共振。这与我们的建模非常一致,通过一阶半分析扰动理论预测和有限差分时间域计算。测量的微腔变速器显示出1.55至1.57μm的共振,Q因子从159到280。在红外波长的操作中,我们将X射线和电子束光刻(用于临界100nm特征尺寸)与薄膜压电表面rnicromachining。这种积分级别允许可实现的硅基光子芯片装置,例如具有可调谐配置的高密度光学滤波器和自发发射增强装置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号