首页> 外文会议>CIGRE Session >Experience from a bipolar HVDC system with a Voltage Source Converter and a Line Commutating Converter
【24h】

Experience from a bipolar HVDC system with a Voltage Source Converter and a Line Commutating Converter

机译:具有电压源转换器的双极HVDC系统的经验和一条换线转换器

获取原文

摘要

The Skagerrak HVDC interconnectors connect Kristiansand substation in Norway and Tjele substation in Denmark. Skagerrak 1, 2 and 3 were commissioned in 1976, -77 and -93 respectively, and have a total power capacity of 1050 MW. The new HVDC interconnector between Norway and Denmark, Skagerrak 4, was commissioned in 2014. The main drivers for the new interconnector are security of supply, climate policy and economy. Skagerrak 4 has a power capacity of 715 MW and is based on multilevel Voltage Source Converter (VSC) technology. This is the first 500 kV VSC-based HVDC link. Skagerrak 1, 2 and 3 are based on Line Commutating Converter (LCC) technology. Skagerrak 1 and 2 operate as a balanced bipolar HVDC scheme. In order to minimize the electrode current through the sea, Skagerrak 4 was installed in a bipole configuration together with Skagerrak 3. This is the first bipole in the world that combines a VSC and a LCC. It has required special considerations in both the control system and in the main circuit design. However, the combination has made it possible to get the advantages of a VSC converter while using the Skagerrak 3 LCC converter to balance the Skagerrak 4 neutral current. VSC and LCC converters are fundamentally different regarding change of the power flow direction. A VSC changes power direction by changing the d.c. current direction, whereas a LCC changes the d.c. side polarity. Hence, Skagerrak 4 has been equipped with d.c. side switches, making it possible to change its d.c. side voltage polarity during power reversals. The paper discusses several aspects of this bipole configuration, including control system challenges, pros & cons as well as first year operating experiences. The substation at the Norwegian side of the interconnectors across Skagerrak sea includes a complex combination of both stationary and dynamic reactive power compensation devices. The new bipole controller handles the overall reactive power control (RPC) of the substation. The concept of the RPC and the experiences from the voltage control in the substation after the installation of Skagerrak 4 is presented in this paper.
机译:Skagerrak HVDC互连器在挪威和Tjele变电站在丹麦连接Kristiansand变电站。 Skagerrak 1,2和3分别在1976年,-77和-93委托,总功率容量为1050 MW。挪威和丹麦的新HVDC互联网,Skagerrak 4,于2014年委托。新互联网的主要驱动因素是供应,气候政策和经济的安全性。 Skagerrak 4的电力容量为715 MW,基于多电平电压源转换器(VSC)技术。这是基于500 kV VSC的HVDC链路。 Skagerrak 1,2和3基于线路换向转换器(LCC)技术。 Skagerrak 1和2作为平衡双极HVDC方案运行。为了使电极电流通过大海,将Skagerrak 4与Skagerrak 3一起安装在双极配置中。这是与VSC和LCC相结合的世界上的第一个Bole。它在控制系统和主电路设计中需要特殊考虑。然而,该组合使得VSC转换器的优势使得使用Skagerrak 3 LCC转换器来平衡Skagerrak 4中性电流。 VSC和LCC转换器对功率流动方向的变化基本不同。 VSC通过更改D.C来改变电源方向。当前方向,而LCC改变了D.C.侧极性。因此,Skagerrak 4已经配备了D.C.侧面交换机,可以改变其D.C.电源逆转期间的侧电压极性。本文讨论了这种Bopole配置的几个方面,包括控制系统挑战,优点和缺点以及第一年的经营经验。跨斯卡拉克海的互联网侧面的变电站包括静止和动态无功补偿装置的复杂组合。新的Bole控制器处理变电站的整体无功功率控制(RPC)。本文介绍了RPC的概念和变电站中的电压控制的经验。本文提出了安装Skagerrak 4之后的变电站。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号