首页> 外文会议>Society of Photo-Optical Instrumentation Engineers Conference on Microelectronics >A New Domino Failure Mechanism in Deep Sub-100nm Technologies and Its Solution
【24h】

A New Domino Failure Mechanism in Deep Sub-100nm Technologies and Its Solution

机译:深次级100NM技术中的新多米诺故障机制及其解决方案

获取原文

摘要

The domino circuit failure is due to competing requirements of the keeper and the NMOS logic transistors that cannot be satisfied simultaneously in order to achieve the noise margin and performance objectives. Domino keeper transistor has to be, upsized to compensate for the subthreshold leakage and gate leakage currents that discharge the dynamic node in deep sub-100nm technologies. Domino multiplexer can fail when the fan-in number is greater than 14 for the noise margin of 0.1 Vdd, where the noise margin is defined as the input voltage that causes 10% voltage drop at the dynamic node of Domino. In simulation, 45nm BSIM4 models were used with the power supply voltage of 0.8V. To solve this problem, we propose a dual gate oxide thickness (Tox) implementation for high fan-in Domino. With proper dual gate oxide thickness assignment, subthreshold leakage and gate leakage that discharge the dynamic node are suppressed with the keeper size reduced. Proposed circuit not only prevents the possible failure in high fan-in Domino, but also reduces the delay and power consumption due to decreased contention between the keeper and NMOS logic tree. For 14-bit domino multiplexer, proposed circuit is 56% faster with 66% less power consumption and without area penalty, compared to single Tox domino.
机译:Domino电路故障是由于保持者和NMOS逻辑晶体管的竞争要求,无法同时满足,以实现噪声裕度和性能目标。必须将Domino Keeper晶体管置于较低的借助漏和栅极泄漏电流,该电流在深次级100nm技术中排出动态节点。当风扇数量大于14时,Domino多路复用器可能会导致0.1 VDD的噪声裕度,其中噪声裕度被定义为在Domino的动态节点处导致10%电压降的输入电压。在仿真中,使用45nm BSIM4型号,电源电压为0.8V。为了解决这个问题,我们提出了高风扇在多米诺骨牌的双栅氧化物厚度(TOX)实施。具有适当的双栅极氧化物厚度分配,欺骗欺骗泄漏和栅极泄漏,使动态节点抑制了保持器尺寸减小。提出的电路不仅可以防止高风扇在Domino中可能的故障,而且还降低了守门员和NMOS逻辑树之间的争用下降导致的延迟和功耗。对于14位Domino多路复用器,与单个Tox Domino相比,所提出的电路较快,功耗较低,功耗少66%,没有区域损失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号