首页> 外文会议>Nonlinear and Adaptive Control Network Workshop on Automotive Control >Controller design for hybrid systems using simultaneous D-stabilisation and its application to anti-lock braking systems (ABS)
【24h】

Controller design for hybrid systems using simultaneous D-stabilisation and its application to anti-lock braking systems (ABS)

机译:混合系统的控制器设计使用同步D稳定化及其在防锁制动系统(ABS)中的应用

获取原文

摘要

In recent years hybrid systems have been widely studied. Many controller design approaches are based on a state space plant model and use full state feedback to satisfy certain stability conditions, for example, the existence of a common Lyapunov function. Pole assignment and LMI-based controller design techniques have also been used. A new controller design method, called simultaneous D-stabilisation and strong simultaneous D-stabilisation, is developed, which can deal with the multiple plant requirement resulting from hybrid systems. Both the simultaneous stabilisation problem (SSP) and strong simultaneous stabilisation problem (SSSP) with the simplest Hurwitz stability requirement are open problems in the control community. In this paper, the new synthesis approach developed is extended to the general D-stability requirement rather than simply the Hurwitz-stability requirement. The advantages of this approach include 1) the desired D-stability region can be of any form and be connected or disjoint. This leads to a unified treatment of continuous and discrete systems, and consequently encompasses the Hurwitz and Schur stability regions as special cases; 2) the size of the family of plants may be finite and more than three, which is the upper bound with the available approaches; 3) both the SSPs and the SSSPS can be dealt with in a unified way, although an SSSP is more complicated than an SSP; 4) the traditional PID-controller tuning problem can be treated within this general framework. The SSP approach is then applied to the synthesis of a robust controller for a typical application in the automotive industry, controller design for anti-lock braking systems (ABS). The controller robustly assigns the closed-loop poles for every plant from different tyre friction models in a prescribed D region. Simulation results with the DaimlerChrysler test vehicle for ABS will also be presented.
机译:近年来,混合系统已被广泛研究。许多控制器设计方法基于状态空间工厂模型,并使用完全状态反馈以满足某些稳定性条件,例如,常见的Lyapunov函数的存在。还使用了极值分配和基于LMI的控制器设计技术。开发了一种新的控制器设计方法,称为同时D稳定和强烈的同时D稳定,可以处理混合系统产生的多种植物要求。具有最简单的Hurwitz稳定性要求的同时稳定问题(SSP)和强大的同时稳定问题(SSP)是控制界的开放问题。在本文中,开发的新综合方法扩展到一般的D稳定性要求,而不是简单的飓风稳定性要求。该方法的优点包括1)所需的D稳定区域可以是任何形式并且连接或不相交。这导致了对连续和离散系统的统一处理,因此包括赫尔维茨和施施稳定地区作为特殊情况; 2)植物系列的大小可能是有限的,三个以上,这是具有可用方法的上限; 3)SSP和SSSP都可以以统一的方式处理,尽管SSSP比SSP更复杂; 4)传统的PID控制器调整问题可以在这一总体框架内进行处理。然后将SSP方法应用于用于汽车行业中典型应用的鲁棒控制器的合成,防锁制动系统(ABS)的控制器设计。控制器鲁棒地将来自规定的D区域的不同轮胎摩擦模型的每个植物的闭环杆分配。还将介绍戴姆勒克莱斯勒试验车辆的仿真结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号