首页> 外文会议>AIChE Annual Meeting >Reactivity and Selectivity Descriptors for the Activation of C-H Bonds in Hydrocarbons and Oxygenates on Metal Oxides
【24h】

Reactivity and Selectivity Descriptors for the Activation of C-H Bonds in Hydrocarbons and Oxygenates on Metal Oxides

机译:反应性和选择性描述符在金属氧化物上活化C-H键和含氧化合物

获取原文

摘要

C-H bond activations at lattice O-atoms on oxides mediate some of the most important chemical transformations of small organic molecules [1-2]. The relations between molecular and catalyst properties and C-H activation energies are discerned in this study for the diverse C-H bonds prevalent in C1-C4 hydrocarbons and oxygenates using lattice Oatoms of polyoxometalate (POM) clusters with a broad range of H-atom abstraction properties. These activation energies determine, in turn, attainable selectivities and yields of desired oxidation products, which differ from reactants in their C-H bond strength. Bronsted-Evans-Polanyi (BEP) linear scaling relations [3-4] predict that C-H activation energies depend solely and linearly on the C-H bond dissociation energies (BDE) in molecules and on the H-atom addition energies (HAE) of the lattice oxygen abstractors. These relations omit critical interactions between organic radicals and surface OH groups that form at transition states that mediate the H-atom transfer, which depend on both molecular and catalyst properties (Fig. 1a); they also neglect deviations from linear relations caused by the lateness of transition states. Thus, HAE and BDE values, properties that are specific to a catalyst and a molecule in isolation, represent incomplete descriptors of reactivity and selectivity in oxidation catalysis (Fig. 1b). These effects are included here through crossing potential formalisms that account for the lateness of transition states in estimates of activation energies from HAE and BDE and by estimates of molecule-dependent, but catalyst-independent, parameters that account for diradical interactions that differ markedly for allylic and non-allylic C-H bonds (Fig. 1c). The systematic ensemble-averaging of activation energies for all C-H bonds in a given molecule show how strong abstractors and high temperatures decrease an otherwise ubiquitous preference for activating the weakest C-H bonds in molecules, thus allowing higher yields of products with C-H bonds weaker than in reactants than predicted from linear scaling relations based on molecule and abstractor properties [5]. Such conclusions contradict the prevailing guidance to improve such yields by softer oxidants and lower temperatures, a self-contradictory strategy, given the lower reactivity of such weaker H-abstractors. The diradical-type interactions, not previously considered as essential reactivity descriptors in catalytic oxidations, may expand the narrow yield limits imposed by linear free energy relations by guiding the design of solids with surfaces that preferentially destabilize allylic radicals relative to those formed from saturated reactants at C-H activation transition states.
机译:在氧化物上晶格O-原子的C-H键活化介导小型有机分子的一些最重要的化学转化[1-2]。在该研究中,分子和催化剂性能和C-H活化能的关系在C1-C4烃类普遍存在的C1-C4烃类和含氧化合物中的不同C-H键,具有多种H-原子抽象性质的晶片菌状物。这些活化能量依次确定可获得的选择性和所需氧化产品的产量,其与其C-H键强度的反应物不同。 Bronsted-evans-polanyi(bep)线性缩放关系[3-4]预测CH激活能量仅依赖于分子中的CH键解离子能量(BDE)和晶格的H-Atom添加能量(HAE)氧气抽象乐队。这些关系省略了在介导H-原子转移的过渡状态下形成的有机自由基和表面OH基团之间的关键相互作用,其取决于分子和催化剂性质(图1A);它们还忽略了由过渡状态迟到引起的线性关系的偏差。因此,HAE和BDE值,特定于催化剂的性质和分离的分子,表示反应性和氧化催化中的选择性的不完全描述符(图1B)。通过交叉潜在的形式主义在此包括交叉过渡状态估计的潜在形式主义,并通过依赖于分子依赖性的估计,但催化剂无关的参数,该参数算用于烯丙基不同显着不同的参数。和非烯丙基CH键(图1C)。给定分子中所有CH键的激活能量的系统合奏均均显示出强烈的摘录器和高温如何降低用于激活分子中最弱的CH键的否则普遍的偏好,从而允许CH键的产量较高而不是反应物弱比基于分子和摘录器属性从线性扩展关系预测[5]。这种结论与较柔软的氧化剂和较低的温度,自相矛盾策略提高了这种结果,鉴于这种较弱的H-Authraptors的反应性较低,促进了这种结论。以前未被认为是催化氧化中的基本反应性描述符的Diradical型相互作用,可以通过引导具有优先使烯丙基自由基相对于由饱和反应物形成的那些稳定的表面的固体设计来扩展线性自由能量关系的窄产量限制CH激活转换状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号