首页> 外文会议>AIChE Annual Meeting >Hierarchical, Nature-Inspired Nanomaterials for Electrochemical Energy Conversion/Storage Devices
【24h】

Hierarchical, Nature-Inspired Nanomaterials for Electrochemical Energy Conversion/Storage Devices

机译:用于电化学能量转换/存储装置的等级,自然启发纳米材料

获取原文

摘要

Several studies on polymer electrolyte fuel cell (PEFC) durability have shown that the components of the central membrane electrode assembly (MEA), especially the polymer electrolyte membrane (PEM) and electrocatalyst, deteriorate during long term operation. PEM chemical degradation as well as electrocatalyst dissolution are reported to be the major contributors to PEFC lifetime limitations. The chemical degradation of the PEM occurs in a two step process: (i) formation of reactive oxygen species (ROS) such as hydroxyl (OH*) and hydroperoxyl (HOO*) radicals (OH* are far more reactive); and (ii) reaction of ROS with the PEM leading to chain scission. Additionally, loss of electrochemically active area is observed under long term operation due to nanoparticle growth by Ostwald ripening where large Pt particles grow at the expense of small ones via interparticle transport of single atoms. In order to mitigate those degradation mechanisms, the efficacy of rare earth metal oxide nanoparticles on reducing the membrane degradation rate as a function of their microstructure, redox properties and location within the fuel cell is presented. On the catalyst dissolution front, the investigation of the effect of uniform particle size distribution on catalyst stability is presented via theoretical and in-situ experimental studies. To further improve the design of highly stable hierarchical electrocatalysts, in-depth research on the effect of nano-architecture on reaction/transport kinetics is necessary. Inspiration can be derived from nature as it is full of hierarchical designs that are intrinsically scaling. Developing fundamental understanding of how such desired properties of biological systems are related to their architecture and self-assembly dynamics can guide the development of novel hierarchical catalytic nanomaterials and nature-inspired electrochemical devices.
机译:关于聚合物电解质燃料电池(PEFC)耐久性的几项研究表明,中央膜电极组件(MEA)的组分,尤其是聚合物电解质膜(PEM)和电催化剂,在长期操作期间劣化。 PEM化学降解以及电催化剂溶解据报道是PEFC寿命限制的主要贡献者。 PEM的化学降解发生在两个步骤过程中:(i)形成反应性氧(ROS)如羟基(OH *)和氢过氧基(HOO *)基团(OH *远远超过反应性); (ii)RO与PEM导致链群的反应。另外,由于纳米颗粒生长,通过骨干生长的长期运行,在长期运行中观察到电化学活性区域的丧失,其中大于Pt颗粒以小颗粒通过单个原子的颗粒分发为牺牲小的Pt颗粒生长。为了减轻那些降解机制,呈现了稀土金属氧化物纳米颗粒的功效,作为其微观结构的函数,氧化还原性能和燃料电池内的位置的膜降解速率降低。在催化剂溶解前,通过理论和原位实验研究介绍了均匀粒度分布对催化剂稳定性的影响的研究。为了进一步改善高度稳定的等级电催化剂的设计,需要深入研究纳米架构对反应/运输动力学的影响。灵感可以从性质中得出,因为它充满了本质上缩放的分层设计。制定基础知识对生物系统的这种预期特性如何与其建筑和自组装动力相关的基础知识可以指导新型等级催化纳米材料和自然启发电化学装置的发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号