首页> 外文会议>IUTAM Symposium on Analytical and Computational Fracture Mechanics of Non-Homogeneous Materials >Determination of cohesive laws for materials exhibiting large scale damage zones: from R-curves for wedge loaded DCB specimens to cohesive laws
【24h】

Determination of cohesive laws for materials exhibiting large scale damage zones: from R-curves for wedge loaded DCB specimens to cohesive laws

机译:测定表现出大规模损伤区的材料的凝聚规律:从R形曲线进行楔形的DCB标本到凝聚性法律

获取原文

摘要

Large cohesive zones have been experimentally observed in the crack wakes of various non-homogeneous materials, such as continuous-fibre composites, short-fibre composites, paper materials and adhesively joined structures. Traditionally, fracture resistance curves (R-curves) have been used to characterize this class of materials. Since the cohesive zones are comparable in size with test specimen dimensions, the R-curve behaviour can not be used as a material property (Suo et al., 1992). Instead, a cohesive law may be deduced as a material property. This law relates the crack surface traction to the opening displacement. Since a lot of experimental data exist in the form of R-curves, it would be useful to develop an approach, where this data could be used to extract cohesive laws. In the present study, means to acquire the cohesive law from conventional R-curve data are presented. The double cantilever beam (DCB) specimen with applied wedge forces is a widely used test method to obtain R-curves from load and crack length measurements. The purpose of the present study is to develop an approach that enables the cohesive law to be derived from a single DCB R-curve data set. A semi-analytical weight-function approach is employed, and the obtained cohesive laws may be used to predict crack growth for other geometries and load conditions. Microstructural parameters can be extracted from the cohesive law. Experimental observations of damage mechanisms suggest that micromechanical models may be developed to identify these parameters, e.g. fibre-matrix interfacial shear strengths in pull-out of crack-bridging fibres in composites. For example, fibre cross-over bridging in delamination of unidirectional composites can be modelled (Spearing and Evans, 1992), and related to results from macroscopic delamination tests (SΦrensen and Jacobsen, 1998). Even if fibre bridging does not physically take place, the inelastic processes may be described by cohesive laws that incorporate damage accumulation, e.g. in concrete (Hillerborg et al., 1976), paper material (Ostlund et al., 1999) and short-fibre composites (Lindhagen et al., 2000). Another potential of cohesive-zone modelling and micromechanics is design against notch sensitivity.
机译:在各种非均相材料的裂纹唤醒中进行了大的粘性区域,例如连续纤维复合材料,短纤维复合材料,纸材料和粘性连接的结构。传统上,裂缝抗性曲线(R-曲线)已经用于表征这类材料。由于粘性区域的尺寸与试样尺寸的尺寸相当,因此R曲线行为不能用作材料特性(Suo等,1992)。相反,可以推导出粘性定律作为材料性质。本法将裂缝表面牵引力与开口位移相关。由于R形曲线的形式存在许多实验数据,因此开发一种方法是有用的,其中该数据可用于提取粘性法律。在本研究中,提出了从传统的R曲线数据获取粘性法的手段。具有施加楔形力的双悬臂梁(DCB)样本是广泛使用的试验方法,以获得来自负载和裂缝长度测量的R曲线。本研究的目的是开发一种方法,使得凝聚率能够从单个DCB r曲线数据集产生。采用半分析重量函数方法,获得的粘性定律可用于预测其他几何形状和负载条件的裂纹增长。微观结构参数可以从粘性法中提取。损伤机制的实验观察表明,可以开发微机械模型以识别这些参数,例如,复合材料中裂解桥纤维拉出的纤维 - 矩阵界面剪切强度。例如,可以对单向复合材料进行分层的纤维交叉桥接(Spearing和Evans,1992),与宏观分层测试的结果有关(SφRensen和Jacobsen,1998)。即使纤维桥接不在物理上发生,也可以通过包含损​​伤积累的粘性定律来描述无弹性过程,例如,粘性累积在混凝土(Hillerborg等,1976)中,造纸材料(Ostlund等,1999)和短纤维复合材料(Lindhagen等,2000)。凝聚区建模和微机械的另一个潜力是针对缺口敏感性的设计。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号