首页> 外文会议>NASA Materials Science Conference >MODELS OF MASS TRANSPORT DURING MICROGRAVITY CRYSTAL GROWTH OF ALLOYED SEMICONDUCTORS IN A MAGNETIC FIELD
【24h】

MODELS OF MASS TRANSPORT DURING MICROGRAVITY CRYSTAL GROWTH OF ALLOYED SEMICONDUCTORS IN A MAGNETIC FIELD

机译:磁场中合金半导体微晶晶体生长期间的质量运输模型

获取原文

摘要

Alloyed semiconductor crystals, such as germanium-silicon (GeSi) and various II-VI alloyed crystals, are extremely important for optoelectronic devices. Currently, high-quality crystals of GeSi and of II-VI alloys can be grown by epitaxial processes, but the time required to grow a certain amount of single crystal is roughly 1,000 times longer than the time required for Bridgman growth from a melt. Recent rapid advances in optoelectronics have led to a great demand for more and larger crystals with fewer dislocations and other microdefects and with more uniform and controllable compositions. Currently, alloyed crystals grown by bulk methods have unacceptable levels of segregation in the composition of the crystal. Alloyed crystals are being grown by the Bridgman process in space in order to develop successful bulk-growth methods, with the hope that the technology will be equally successful on earth. Unfortunately some crystals grown in space still have unacceptable segregation, for example, due to residual accelerations. The application of a weak magnetic field during crystal growth in space may eliminate the undesirable segregation. Understanding and improving the bulk growth of alloyed semiconductors in microgravity is critically important. The purpose of this grant to to develop models of the unsteady species transport during the bulk growth of alloyed semiconductor crystals in the presence of a magnetic field in microgravity. The research supports experiments being conducted in the High Magnetic Field Solidification Facility at Marshall Space Flight Center (MSFC) and future experiments on the International Space Station.
机译:合金半导体晶体,例如锗 - 硅(GESI)和各种II-VI合金晶体,对光电器件非常重要。目前,GESI和II-VI合金的高质量晶体可以通过外延工艺生长,但是生长一定量的单晶所需的时间大约比熔体生长所需的时间长度长。最近光电子的快速进步导致了对较少且较大的晶体和其他微碎片和更均匀和可控组合物的大量需求。目前,由批量方法生长的合金晶体在晶体的组合物中具有不可接受的偏析水平。合金晶体正在空间中的布里戈曼工艺种植,以便开发成功的批量生长方法,希望该技术在地球上同样成功。不幸的是,由于残留加速,一些在空间中生长的一些晶体仍然具有不可接受的偏析。在空间中晶体生长期间施加弱磁场可以消除不希望的偏析。理解和改善微匍匐中合金半导体的散装生长至关重要。该授予在微耕地的磁场存在下在合金半导体晶体的散装生长期间开发非稳态物种运输模型的目的。该研究支持在马歇尔空间飞行中心(MSFC)的高磁场凝固设施中进行的实验以及国际空间站的未来实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号