首页> 外文会议>International Congress of Mathematicians >Fast Poisson-based Solvers for Linear and Nonlinear PDEs
【24h】

Fast Poisson-based Solvers for Linear and Nonlinear PDEs

机译:基于快速的线性和非线性PDE的溶剂

获取原文

摘要

Over the last few decades, developing efficient iterative methods for solving discretized partial differential equations (PDEs) has been a topic of intensive research. Though these efforts have yielded many mathematically optimal solvers, such as the multigrid method, the unfortunate reality is that multigrid methods have not been used much in practical applications. This marked gap between theory and practice is mainly due to the fragility of traditional multigrid methodology and the complexity of its implementation. This paper aims to develop theories and techniques that will narrow this gap. Specifically, its aim is to develop mathematically optimal solvers that are robust and easy to use for a variety of problems in practice. One central mathematical technique for reaching this goal is a general framework called the Fast Auxiliary Space Preconditioning (FASP) method. FASP methodology represents a class of methods that (1) transform a complicated system into a sequence of simpler systems by using auxiliary spaces and (2) produces an efficient and robust preconditioner (to be used with Krylov space methods such as CG and GMRes) in terms of efficient solvers for these simpler systems. By carefully making use of the special features of each problem, the FASP method can be efficiently applied to a large class of commonly used partial differential equations including equations of Poisson, diffusion-convection-reaction, linear elasticity, Stokes, Brinkman, Navier–Stokes, complex fluids models, and magnetohydrodynamics. This paper will give a summary of results that have been obtained mostly by the author and his collaborators on this topic in recent years.
机译:在过去的几十年里,为了解决开发高效的迭代方法离散偏微分方程二酯酶(PDE)一直深入研究的课题。虽然这些努力已经取得了许多数学上最优的解算器,如多重网格法,不幸的现实是,多重网格方法还没有多少实际应用中使用。理论与实践之间的这标志着差距主要是由于传统的多重网格方法的脆弱性和其实施的复杂性。本文的目的是发展的理论和技术,这将缩小这个差距。具体而言,其目的是建立数学上最优的求解器功能强大且易于使用的各种实际问题。为达到这个目标的一个中心的数学技术被称为快速辅助空间预处理(FASP)方法的总体框架。 FASP方法代表一个类的方法(1)变换一个复杂的系统为更简单的系统的序列通过使用辅助空间和(2)产生一个高效且健壮的预处理器中(与克雷洛夫空间的方法,例如CG和GMRES使用)这些简单的系统有效的解决者的条款。通过仔细地利用的每个问题的特殊功能,该FASP方法可以有效地应用于大类常用的偏微分方程,包括泊松,扩散对流反应,线性弹性,斯托克斯,布林克曼,纳维 - 斯托克斯方程的,复杂流体模型和磁流体。本文将给已经由作者和他近年来关于这一主题的合作者获得的大多是结果的总结。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号