首页> 外文会议>Meeting of the Electrochemical Society >Modeling Proton Exchange Membrane Fuel Cell Cathode Catalyst Layers with the Lattice-Boltzmann-Method Framework
【24h】

Modeling Proton Exchange Membrane Fuel Cell Cathode Catalyst Layers with the Lattice-Boltzmann-Method Framework

机译:采用格子螺栓玻璃法塑造质子交换膜燃料电池阴极催化剂层

获取原文

摘要

A Lattice-Boltzmann-Method model for a proton exchange membrane fuel cell (PEMFC) electrode has been presented. One of the main challenges in the development of the cathode catalyst layer (CCL) in PEMFCs is the lack of detailed understanding of species transport and how it affects electrochemical performance. Researchers have typically used high level approximations that oversimplify the microstructure of the CCL-these are known as macrohomogenous models. However, as the field has progressed, these idealizations have begun to show their flaws, especially in areas of improving catalytic performance with lower Pt-loadings and non-noble metal catalysts. Previously, the microstructure details needed to build an accurate mesoscale model have eluded researchers; however, with advances in tomography and focused-ion-beam scanning-electron-microscopy (FIB-SEM), creating these representations has become possible. Mesoscale modeling in the CCL has been traditionally approached through either the Lattice-Boltzmann-Method (LBM) or electrochemistry coupled Direct-Numerical-Simulation (DNS). These models have been underutilized in the fuel-cell community due to their complexity and resource intensiveness; however, with advances in parallel computing, this has become not only a possibility, but a necessity for modeling phenomena such as low platinum loadings and interfacial effects. The idea behind this model is to study a particular phenomenon - the effect of current density on saturation. While not the focus of this work, LBM can eventually be coupled with DNS in a synergistic modeling approach. This can shed light on the transport and degradation phenomena in PEMFCs, particularly catalyst layer considerations and carbon support corrosion.
机译:已经介绍了质子交换膜燃料电池(PEMFC)电极的格子-Boltzmann-方法模型。 PEMFCs中阴极催化剂层(CCL)发展的主要挑战之一是对物种运输缺乏详细了解以及它如何影响电化学性能。研究人员通常使用高水平的近似,即超薄CCL的微观结构被称为宏观源模型。然而,随着领域的进展,这些理想化已经开始展示其缺陷,特别是在利用较低的Pt载荷和非贵金属催化剂改善催化性能的领域。以前,构建精确的Mesoscale模型所需的微结构细节具有研究人员;然而,通过断层扫描和聚焦离子束扫描 - 电子显微镜(FIB-SEM)的进步,可以创建这些表示成为可能。 CCL中的Messcale建模已经传统上通过Lattice-Boltzmann-Methof(LBM)或电化学耦合直接数值模拟(DNS)。由于它们的复杂性和资源强焦,这些模型已在燃料 - 细胞界中未充分利用;然而,随着并行计算的进步,这不仅成为可能性,而且是建模现象等可能性的必要性,例如低铂载荷和界面效应。该模型背后的想法是研究特定的现象 - 电流密度对饱和度的影响。虽然不是这项工作的重点,但LBM最终可以以协同建模方法与DNS耦合。这可以在PEMFCs中的运输和降解现象,特别是催化剂层考虑和碳载体腐蚀上脱光。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号