首页> 外文会议>Strategic Planning Workshop of the International Maize and Wheat Improvement Center >Utilizing new technologies to investigate drought tolerance in maize: a perspective from industry
【24h】

Utilizing new technologies to investigate drought tolerance in maize: a perspective from industry

机译:利用新技术调查玉米的耐旱性:行业的视角

获取原文

摘要

Drought induced yield losses can be substantial and researchers have been attempting to improve the tolerance of crops to limiting supplies of water for decades. Physiologists, breeders, biochemists, agronomists, and molecular biologists have all used specific tools from their disciplines to unravel the complexities of the drought response. Their efforts have resulted in improved knowledge of drought tolerance; however, predictable improvement remains elusive. We believe that one key to improving drought tolerance is the identification of critical genes whose expression controls the plant phenotype. This effort has been aided recently by the identification of chromosomal segments associated with drought tolerance via quantitative trait loci (QTL) analysis. Unfortunately, large numbers of genes fall within these chromosomal segments and the identification of key genes within QTL responsible for drought tolerance have not yet been identified. With the advent of genomic technologies, it is now possible to efficiently analyze thousands of genes simultaneously and, hopefully, identify drought responsive genes in maize. Genomic technologies can be divided into structural and functional categories. Structural genomics categories. Structural genomics entails some aspect of sequencing genomes and this activity has been ongoing for some time in many species, including maize. At Pioneer, we have been sequencing the maize genome since 1996, and we currently have over 200, 000 ESTs in our database, which we estimate represents 60% of the genes in the genome. We are applying these sequenced genes to various functional genomic tools. Functional genomics involves using various technology platforms to determine transcript levels of sequenced genes. In our case, we are using these tools to better understand the molecular mechanisms of maize plants growing under water deficits. We are using both open and closed expression profiling technologies. By definition, an open system allows one to survey all transcripts and compare their levels between two different RNA pools, but the identity of the genes may not be known a priori. In contrast, with the closed system one can analyze only those genes that one has isolated a priori; however, once the analysis is complete the genes showing differential expression are immediately know.
机译:干旱诱导的产量损失可能是大量的,研究人员一直试图改善农作物的耐受性,以限制水的供应数十年。生理学家,育种者,生物化学师,农学学家和分子生物学家都有来自他们的学科的所有特定工具,以解开干旱反应的复杂性。他们的努力导致了对干旱耐受性的了解;然而,可预测的改进仍然难以捉摸。我们认为改善耐旱性的一个关键是鉴定表达控制植物表型的关键基因。最近通过鉴定与通过定量特性基因座(QTL)分析相关的染色体段来鉴定与旱化耐受相关的染色段。不幸的是,大量基因落在这些染色体段内,并且尚未确定负责耐旱耐受性的QTL内的关键基因。随着基因组技术的出现,现在可以同时效果分析成千上万的基因,并且希望鉴定玉米中的干旱反应基因。基因组技术可分为结构性和功能类别。结构基因组学分类。结构基因组学需要一些关于测序基因组的方面,并且在包括玉米的许多物种中,这项活动一直在进行一段时间。在先驱,我们自1996年以来排序玉米基因组,我们目前在我们的数据库中拥有超过200,000个EST,我们估计代表了基因组中的60%的基因。我们正在将这些测序基因施加到各种功能基因组工具中。功能基因组学涉及使用各种技术平台来确定测序基因的转录物水平。在我们的情况下,我们正在使用这些工具来更好地了解玉米植物在水缺陷下生长的分子机制。我们正在使用开放和封闭式表达分析技术。根据定义,开放系统允许人们调查所有转录物并比较两个不同的RNA池之间的水平,但是基因的身份可能无法知道先验。相比之下,与封闭的系统一起,只能分析一个人已经孤立的那些基因;然而,一旦分析完成,就会立即知道显示差异表达的基因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号