首页> 外文会议>Symosium on thermoelectric materials - the next generation materials for small-scale refrigeration and power generation applications >Electronic structure of complex bismuth chalcogenides and other narrow-gap thermoelectric materials
【24h】

Electronic structure of complex bismuth chalcogenides and other narrow-gap thermoelectric materials

机译:复合铋硫胺化物和其他窄间隙热电材料的电子结构

获取原文

摘要

There is considerable current effort to new thermoelectric materials with a high figure of merit Z. Some of these new materials are narrow-gap semiconductors with rather complex crystal structures. In this paper we discuss the results of electronic structure calculations in two classes of such ysystems. The first class consists of BaBiTe_3, a structural and chemical derivative of the well-studied Bi_2Te_3. Similarities and differences in the band structures of these two systems are discussed. The second class consists of half-heusler or "stuffed"-NaCl compounds MNiX, where M is Y, La, Lu, Yb, and X is a phictogeh; As, Sb, Bi. To understand the physical reason behind the energy gap formation, we compare the electronic structure of YNiSb with that of an isoelectronic system ZrNiSn, another isostructural compound of thermoelectric interest. These calculations were carried out within density functional theory (in generalized gradient approximation) using self-consistent full-otential LAPW method. Energy gaps and effective masses associated with the conduction band minimum and valence band maximumhave been calculated and these quantities have been used to estimate transport properties. Large room temperature thermopower values in Bi_2Te_3 and BaB_iTe_3 can be understood in terms of multiple conduction and valence band extrema whereas similar large values in ZrNiSn and other half-Heusler compounds can be ascribed to large electron and hole effective mass.
机译:新的热电材料具有相当大的努力,具有高度优异的Z.其中一些新材料是具有相当复杂的晶体结构的窄间隙半导体。在本文中,我们讨论了两类此类Ysystems中的电子结构计算结果。第一类由Babite_3组成,良好研究的Bi_2te_3的结构和化学衍生物。讨论了这两个系统的带结构的相似性和差异。第二类由半风塞或“填充”-NACL化合物Mnix组成,其中M是Y,La,Lu,Yb,x是氏丸; AS,SB,BI。要了解能源间隙形成背后的物理原因,我们将YnISB的电子结构与等电子系统Zrnisn的电子结构进行比较,另一种热电兴趣化合物。使用自我一致的全侧型LAPW方法在密度泛函理论(在广义梯度近似)内进行这些计算。计算出与导通带最小和价带最多的能量间隙和有效质量已经计算出,并且这些数量已被用于估计传输性质。在多种传导和价频带极值方面可以理解Bi_2te_3和Bab_ite_3中的大型室温热量值,而ZrnISN和其他半起式化合物中的类似大值可以归因于大的电子和孔有效质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号