首页> 外文会议>United Thermal Spray Conference Exposition >Special session on induction plasma spraying: Diagnostics on a thermal RF plasma process used for the evaporation of zirconia powders
【24h】

Special session on induction plasma spraying: Diagnostics on a thermal RF plasma process used for the evaporation of zirconia powders

机译:诱导等离子体喷涂的特殊会议:用于氧化锆粉末蒸发的热射频等离子体工艺的诊断

获取原文

摘要

The radio frequency generated thermal plasmas offer a 10000 K hot region free from electrode contamination. The long residence time - compared to DC plasma jets - for particles injected into this kind of plasma jet makes it suitable for the production of ultrafine particles and coatings. In addition to plasma spraying, where melting of injected precursor materials is sufficient, the plasma flash evaporation technique [1] requires complete evaporation of the precursor to produce high-performance coatings and nanosized powders. The method consists of an evaporation phase, where the injected solid precursor materials are vaporized. Rapid quenching causes a limited growth of nucleating particles or condensation of a coating on an appropriate substrate, respectively. Solids as starting materials are available at low costs for a wide class of materials, and, since the pure substances can be used, no unwelcome reaction products are formed. Boiling point and heat of evaporation are often much higher for the solid starting materials compared to other precursors, so special care has to be taken for the complete evaporation of the particles. Zirconia (ZrO_2) is a material with extreme thermal properties (melting temperature: 2950 K, evaporation temperature: 4548 K, [2]). The high thermal stability of ZrO_2 is used in technical applications such as high temperature thermal insulation and solid oxide fuel cells [3]. On the other hand, this stability makes it difficult to achieve a complete evaporation of zirconia in a thermal plasma, so up to now, not much work has been reported on the successful evaporation of solid ZrO_2 [4]. Numerical modeling of the plasma zone and the behaviour of the injected particles supports the prediction of the interaction between plasma properties (temperature and velocity field, gas flow and gas composition), particle properties, probe position and geometry [5-10]. Optical emission spectroscopy is an independent approach to check the numerically predicted particle evaporation experimentally [10,11]. The velocity of the injected particles and thus the residence time of the particles in the plasma plays an important role for the evaporation. The velocity is measured by the LDA technique.
机译:射频产生的热等离子体提供10000k的热区域,没有电极污染。长期停留时间 - 与直流等离子体喷射相比 - 用于注入这种等离子体射流的颗粒使其适用于生产超细颗粒和涂层。除了等离子体喷涂之外,在注射前体材料的熔化是足够的情况下,等离子体闪蒸蒸发技术[1]需要完全蒸发前体,以产生高性能涂层和纳米粉末。该方法包括蒸发阶段,其中注入的固体前体材料蒸发。快速猝灭导致有限的成核颗粒或涂层在适当的基材上的缩合。固体作为起始材料可用于各种材料的低成本,并且由于可以使用纯物质,因此没有形成不受欢迎的反应产物。与其他前体相比,固体原料的沸点和蒸发热量往往高得多,因此必须特别注意颗粒的完全蒸发。氧化锆(ZrO_2)是具有极端热性质的材料(熔化温度:2950K,蒸发温度:4548 k,[2])。 ZrO_2的高热稳定性用于技术应用,如高温隔热和固体氧化物燃料电池[3]。另一方面,这种稳定性使得难以在热等离子体中实现氧化锆的完全蒸发,因此目前迄今为止,在成功蒸发的固体ZrO_2 [4]的成功蒸发上报告了没有多少工作[4]。等离子体区的数值建模及注入颗粒的行为支持预测等离子体性质(温度和速度场,气体流动和气体组合物),颗粒性质,探针位置和几何形状的预测[5-10]。光发射光谱是一种独立的方法来检查实验上的数值预测的颗粒蒸发[10,11]。注入颗粒的速度以及因此颗粒在等离子体中的停留时间对蒸发起着重要作用。通过LDA技术测量速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号