首页> 外文会议>ASME International Mechanical Engineering Congress >Comparison of Molten Carbonate and Solid Oxide Fuel Cells for Integration in a Hybrid System for Cogeneration or Tri-generation
【24h】

Comparison of Molten Carbonate and Solid Oxide Fuel Cells for Integration in a Hybrid System for Cogeneration or Tri-generation

机译:熔融碳酸盐和固体氧化物燃料电池在杂交系统中集成的比较,用于热电系统或三代

获取原文

摘要

High temperature fuel cells, such as molten carbonate fuel cells (MCFC) and solid oxide fuel cells (SOFC) can be integrated in a hybrid cycle with a gas turbine and a steam turbine and achieve overall lower heating value (LHV) efficiencies of about 70%. A hybrid cycle designed for cogeneration or tri-generation applications could lead to even higher overall LHV efficiencies. Tri-generation is the combined generation of power, heat and cooling from the same fuel source. The purpose of the present paper is to compare the performance of a 20MW MCFC system and a 20MW tubular SOFC system and assess their potential to cogeneration and tri-generation applications. The system includes a fuel cell, a gas turbine, a multiple pressure heat recovery steam generator (HRSG), a steam turbine and an absorption chiller (for cooling). The systems were designed and sized using Gatecycle heat balance software by GE Enter Software, LLC. In order to optimize each system we developed curves showing LHV "electric" and "cogeneration" efficiency versus power for different ratios of “MCFC and SOFC fuel cell - to - gas turbines size". At atmospheric pressure and at 675°C (1247°F) the 20MW MCFC system achieves "electric" efficiency of 69.5%. The SOFC at the same pressure and at 980°C achieves 67.3% "electric" efficiency. The MCFC alone is more efficient (58%) than the SOFC alone (56%). However the SOFC produces more heat than the MCFC leading to slightly higher cogeneration and tri-generation efficiencies. Pressurized operation at 9 atm boosts the performance of the SOFC system to higher efficiencies (70.5%). Pressurized operation is problematic for the MCFC due to increased cathode corrosion leading to cathode dissolution as well as sealant and interconnection problems. However we can pressurize the MCFC system independently of the fuel cell with the integration of a gas turbine with a compressor pressure ratio of 10 to 16. Thus we achieve efficiencies close to 69%. In conclusion SOFC is more efficiently integrated in a hybrid configuration with gas turbine and a steam turbine for tri-generation applications when pressurized. MCFC is more efficiently integrated at atmospheric and pressures below 6 atm.
机译:诸如熔融碳酸盐燃料电池(MCFC)和固体氧化物燃料电池(SOFC)的高温燃料电池可以与燃气涡轮机和蒸汽涡轮机集成在混合循环中,并达到大约70的总体加热值(LHV)效率。 %。为热电联产或三代应用设计的混合循环可能导致甚至更高的整体LHV效率。三代是来自相同燃料源的功率,热量和冷却的组合产生。本文的目的是比较20MW MCFC系统和20MW管状SOFC系统的性能,并评估它们对热电联产和三代应用的潜力。该系统包括燃料电池,燃气轮机,多重压力热回收蒸汽发生器(HRSG),蒸汽轮机和吸收冷却器(用于冷却)。使用GE进入软件,LLC使用Gatecycle Heat Dealta软件设计和尺寸设计和尺寸。为了优化每个系统,我们开发了显示LHV“电动”和“热电联产”效率与“MCFC和SOFC燃料电池到燃气轮机尺寸”不同比率的曲线的曲线。在大气压和675°C(1247° f)20MW MCFC系统实现“电动”效率为69.5%。同样压力和980°C的SOFC实现了67.3%“电动”效率。单独的MCFC比单独的SOFC更有效(58%)(56%)(56 %)。然而,SOFC产生比MCFC更多的热量,导致稍高的热电联产和三代效率。9个ATM的加压操作会使SOFC系统的性能提高到更高的效率(70.5%)。对MCFC的加压操作是有问题的由于导致阴极溶解以及密封剂和互连问题的阴极腐蚀增加。然而,我们可以通过与压缩机压力比为10至16的压缩机压力比的燃气轮机的整合来将MCFC系统独立地对MCFC系统进行加压。因此,我们效率接近69%。总之,SOFC在加压时更有效地集成在具有燃气轮机和蒸汽轮机的混合配置中,用于加压时的三进体应用。 MCFC在大气中更有效地集成在大气和压力下方6个atm以下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号