首页> 外文会议>ASME Pressure Vessels and Piping Conference >COOPERATIVE DESIGN AND OPTIMIZATION OF REACTOR COOLANT SYSTEM PIPING SUPPORTS UNDER STATIC AND DYNAMICAL LOAD CONDITIONS
【24h】

COOPERATIVE DESIGN AND OPTIMIZATION OF REACTOR COOLANT SYSTEM PIPING SUPPORTS UNDER STATIC AND DYNAMICAL LOAD CONDITIONS

机译:静电和动力载荷条件下反应堆冷却剂系统管道支架的合作设计与优化

获取原文

摘要

The main pipes of reactor coolant systems (RCS) are usually long flexible structures that are connected to multiple key equipment and components of the nuclear system (e.g., reactor pressure vessel, steam generator, main pump, etc.). Mechanical analysis of pipe responses at key elbows and weld seams under static and dynamical load conditions is an essential step to ensure safety and reliability of the whole RCS. Common practice to keep the structural integrity of RCS piping under dynamical load (seismic or shock load) is to impose supporting devices at various locations so that the stiffness at weak spots can be improved. Nevertheless, the introduction of supporting devices, especially the mechanical stops, may cause significant increase of thermal stress due to the block of thermal expansion path of the piping. Hence, cooperative design and optimization of RCS piping supports by jointly considering the piping responses under static and dynamical load cases becomes quite a necessity. In this paper, such an optimal design task is formulated as a multi-objective optimization problem (MOP) with the stress level at key elbows and weld seams of the main pipes as objectives; and various parameters of each supporting device as design variables. The key feature of such MOP is that the number of design variables is unknown in prior. A single support sampling strategy is first proposed to observe the influence of one supporting device. Clustering algorithms are then applied to discover patterns from the single support sampling pool. A 3-snubber-3-stop main pipe support layout is determined via unsupervised clustering algorithms. We perform the surrogate-model based parameter optimization once the optimization framework is fixed. Simulation results of the optimal piping support design show good satisfactions of stress level according to ASME boiler and pressure vessel code (BPVC) under both static and dynamical load cases. The data-driven design and optimization procedures presented in this paper suit the optimal design with conflicting objectives and unclear number of design variables.
机译:反应堆冷却剂系统(RCS)的主要管通常是长的柔性结构,其连接到多个关键设备和核系统的部件(例如,反应器压力容器,蒸汽发生器,主泵等)。在静态和动态负载条件下,弯头肘部和焊缝的管道响应的机械分析是确保整个RCS的安全性和可靠性的重要步骤。在动态负荷(地震或冲击负荷)下保持RCS管道结构完整性的常见做法是在各个位置施加支撑装置,以便可以提高弱斑的刚度。然而,引入支撑装置,尤其是机械止动件,可能导致管道的热膨胀路径块引起的热应力增加。因此,通过联合考虑静态和动态负载壳体下的管道响应来协同设计和优化RCS管道支撑的变得相当必要。在本文中,这种最佳设计任务被制定为多目标优化问题(MOP),其伸展齿条处的应力水平和主要管道的焊缝作为目标;以及每个支持设备作为设计变量的各种参数。此类拖布的关键特征是在之前的设计变量的数量是未知的。首先提出一种支持采样策略来观察一个支持装置的影响。然后应用聚类算法以发现来自单个支持采样池的模式。通过无监督的聚类算法确定3-Snubber-3-STOP主管支撑布局。一旦优化框架修复,我们执行基于代理模型的参数优化。在静态和动态载荷盒下,最佳管道支撑设计的最佳管道支撑设计的仿真结果表现出应力水平的良好满意度和压力容器代码(BPVC)。本文介绍的数据驱动设计和优化程序适用于具有相互冲突的目标和不清格数量的设计变量的最佳设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号