首页> 外文会议>Symposium on Modern Dynamical Meteorology >A shell model of cascades in turbulent flow
【24h】

A shell model of cascades in turbulent flow

机译:湍流流动级联的壳模型

获取原文

摘要

Understanding the turbulent nature of the atmospheric flow is still a subject of considerable scientific interest. The atmosphere is characterized by having energy on all scales of motion, from the 3 dimensional small scale boundary layer turbulence to the global scales of stationary quasi 2 dimensional planetary waves. One of the main difficulties in characterizing this flow is the lack of clearly separated spectral regimes, or spectral gaps in the spectrum, for the flow. The geostrophic and quasi-geostrophic flow of the atmosphere at the large scale was shown by Charney [2] to be equivalent to 2 dimensional flow. This classical description of the atmospheric flow-works remarkably well due to the relatively stable stratification and the atmospheres small scale height. The characteristics of the 2 dimensionality of the flow is reflected in the energy spectrum. As an extension of Kolmogorovs, 1941 (K41) [3] theory to the 2 dimensional case, Kraichnan [4] predicted from scaling arguments that the energy spectrum for 2 dimensional flow should scale with wave vector as Ek ~ k~3. This was shown by Wiin-Nielsen [5], in an observational study, to be the case for the atmosphere. The result is remarkable, from the point of view of the energy transfer, in the sense that the main mechanism for generation of atmospheric waves, namely the baroclinic instability mechanism, is 3 dimensional in its very nature. Furthermore, a main forcing mechanism, release of latent heat in the tropics from cumulus convection, is small scale and also of a 3 dimensional nature. That is the main reason, why numerical forecasting is such a hard task in the tropics. The fact that quasi-geostrophic theory is not valid in the tropics is for a completely different reason, namely that the Coriolis force vanishes at the equator. From a forecasting point of view, quasi-geostrophy is obsolete; diabatic processes and divergencies are important for good forecasting.
机译:了解大气流动的湍流特性仍是相当大的科学兴趣的课题。气氛的特征在于,在所有运动尺度上具有能量,从3维小规模边界层湍流到固定准二维行星波的全局尺度。表征该流程的主要困难之一是缺乏明显的分离的光谱制度,或者光谱中的光谱间隙,用于流动。通过Charney [2]表示大规模大气层的热脑和准滴注流动,相当于2尺寸流动。由于相对稳定的分层和大气压高度,这种古典流动的经典描述显着良好。流动的2维度的特征反映在能谱中。如Kolmogorovs,1941(K41)的扩展[3]理论到2维的情况下,Kraichnan [4]从缩放参数预测,2维流动能量谱应与波矢量作为EK〜K〜3比例的。这是由Wiin-Nielsen [5]显示的,在一个观察性研究中,是大气的情况。从能量转移的角度来看,结果是显着的,从意义上讲,即产生大气波的主要机制,即倒核不稳定机制,其本质上是3维度。此外,主要迫使机制,从积云对流的热带地带中释放潜热,是小规模,也是3维性质。这是主要原因,为什么数值预测在热带地区是如此艰难的任务。准出色的理论在热带地区无效的事实是完全不同的原因,即科里奥利力在赤道上消失。从预测的角度来看,准出色术是过时的;尿布过程和分歧对良好的预测很重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号