首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >AB INITIO MODELING OF THE ELECTRON TRANSFER REACTION RATE AT THE ELECTRODE-ELECTROLYTE INTERFACE IN LITHIUM-AIR BATTERIES
【24h】

AB INITIO MODELING OF THE ELECTRON TRANSFER REACTION RATE AT THE ELECTRODE-ELECTROLYTE INTERFACE IN LITHIUM-AIR BATTERIES

机译:AB Initio对锂 - 空气电池电极电解质界面的电子转移反应速率建模

获取原文

摘要

Lithium-air batteries are very promising energy storage systems for meeting current demands in electric vehicles. However, the performance of these batteries is highly dependent on the electrochemical stability and physicochemical properties of the electrolyte such as ionic conductivity, vapor pressure, static and optical dielectric constant, and ability to dissolve oxygen and lithium peroxide. Room temperature ionic liquids, which have high electrical conductivity, wide electrochemical stability window and also low vapor pressure, are considered potential electrolytes for these batteries. Moreover, since the physicochemical and electrochemical properties of ionic liquids are dependent on the structure of their constitutive cations and anions, it is possible to tune these properties by choosing from various combinations of cations and anions. One of the important factors on the performance of lithium-air batteries is the local current density. The current density on each electrode can be obtained by calculating the rate constant of the electron transfer reactions at the surface of the electrode. In lithium-air batteries, the oxidation of pure lithium metal into lithium ions happens at the anode. In this study, Marcus theory formulation was used to calculate the rate constant of the electron transfer reaction in the anode side using the respective thermodynamics data. The Nelsen's four-point method of separating oxidants and reductants was used to evaluate the inner-sphere reorganization energy. In addition, the Conductor-like Screening Model (COSMO) which is an approach to dielectric screening in solvents has been implemented to investigate the effect of solvent on these reaction rates. All calculations were done using Density Functional Theory (DFT) at B3LYP level of theory with a high level 6-311++G** basis set which is a Valence Triple Zeta basis set with polarization and diffuse on all atoms (VTZPD) that gives excellent reproducibility of energies. Using this methodology, the electron transfer rate constant for the oxidation of lithium in the anode side was calculated in an ionic liquids electrolyte. Our results present a novel approach for choosing the most appropriate electrolyte(s) that results in enhanced current densities in these batteries.
机译:锂电池是非常有希望的能量存储系统,用于满足电动汽车的当前需求。然而,这些电池的性能高度依赖于电解质的电化学稳定性和物理化学特性,例如离子导电性,蒸气压,静态和光学介电常数,以及溶解氧和过氧化锂的能力。室温离子液体具有高导电性,宽电化学稳定性窗口和低蒸气压,被认为是这些电池的电解电解质。此外,由于离子液体的物理化学和电化学性质取决于其本构体阳离子和阴离子的结构,因此可以通过从阳离子和阴离子的各种组合中选择各种组合来调谐这些性质。锂 - 空气电池性能的重要因素之一是局部电流密度。通过计算电极表面处的电子转移反应的速率常数,可以获得每个电极上的电流密度。在锂空气电池中,纯锂金属氧化成锂离子在阳极处。在该研究中,使用各自的热力学数据来使用Marcus理论制剂来计算阳极侧的电子转移反应的速率常数。纳尔森分离氧化剂和还原剂的四点方法用于评估内球重组能量。此外,已经实施了溶剂中介电学筛选方法的导体样筛选模型(COSMO)以研究溶剂对这些反应速率的影响。所有计算都是在B3LYP理论上的密度泛函理论(DFT)进行的,具有高水平的6-311 ++ G **基础集,该组是具有偏振的价三齐塔基础,并在所有原子(VTZPD)上漫射优异的能量再现性。使用该方法,在离子液体电解质中计算阳极侧氧化锂氧化的电子传递速率常数。我们的结果提出了一种选择最合适的电解质的新方法,导致这些电池中的电流密度增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号