首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >UNDERSTANDING MATHEMATICAL DEFINITIONS OF CIRCULARITY/ROUNDNESS IN ASME GDT Y14.5 AS RELATED TO PART FUNCTIONALITY
【24h】

UNDERSTANDING MATHEMATICAL DEFINITIONS OF CIRCULARITY/ROUNDNESS IN ASME GDT Y14.5 AS RELATED TO PART FUNCTIONALITY

机译:了解ASME GD&T Y14.5与零件功能相关的圆形/圆度的数学定义

获取原文

摘要

With the advent and development of precision machining and manufacturing, the necessity to ensure quality of the produced parts for their longevity has grown as fast the advances in technology. One of the ways of achieving higher product lives has been through tighter tolerances on size and form characteristics. Thus, it is imperative that designers, manufacturers and quality inspectors understand the mathematical principles guiding these dimensional and form characteristics, and further utilize them, to the greatest degree possible, in the inspection equipment and tooling. One of the greatest benefits to mankind was the invention of wheel. It is inarguably evident how much of our lives depend on machines with rotating parts. From power stations to power tools, from the smallest watch to the largest car, all contain round components. In precision machining of cylindrical parts, the measurement and evaluation of roundness (also called circularity in ASME Geometric Dimensioning & Tolerancing, GD&T Y14.5) is an indispensable component to quantify form tolerance. Based on reference circles, this paper focuses on the four modeling methods of roundness. These are (1) Least Squares Circle (LSC), (2) Maximum Inscribed Circle (MICI), (3) Minimum Circumscribed Circle (MCCI) and (4) Minimum Zone or Minimum Radial Separation Circles. These methods have been explained in the context of their implications on design applications, advantages and disadvantages. This article also explores how these multitudes of parameters are to be understood and be incorporated into undergraduate engineering curriculum, and be taught as an improved toolkit to the aspiring engineers, process engineers and quality control professionals.
机译:随着精密加工和制造的出现和开发,必须确保生产零件的质量的必要性,为技术的进步发展了寿命。实现更高产品生活的方法之一是通过更严格的尺寸和形式特征进行公差。因此,设计师,制造商和质量检查员必须了解引导这些尺寸和形状特征的数学原理,并进一步利用它们,以在检测设备和工具中最大程度地利用它们。人类最大的益处是轮子的发明。它是明显的,我们的生活是多少取决于旋转部件的机器。从发电站到电动工具,从最小的手表到最大的汽车,所有这些都包含圆形组件。在圆柱形部件的精确加工中,圆度的测量和评估(ASME几何尺寸和公差,GD&T Y14.5)的圆度(也称为圆形度,GD&T Y14.5)是定量形式耐受的不可缺少的组分。基于参考圈,本文侧重于四种圆度建模方法。这些是(1)最小二乘圆(LSC),(2)最大刻录圆(MICI),(3)最小外接圆(MCCI)和(4)最小区域或最小径向分离圆圈。这些方法已经在其对设计应用,优缺点的影响的范围内解释。本文还探讨了如何理解这些多种参数,并将其纳入本科工程课程,并被教授为有抱负的工程师,工艺工程师和质量控制专业人员的改进的工具包。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号