首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >PREDICTION OF THERMAL CONDUCTIVITY AND SHEAR VISCOSITY OF WATER-CU NANOFLUIDS USING EQUILIBRIUM MOLECULAR DYNAMICS
【24h】

PREDICTION OF THERMAL CONDUCTIVITY AND SHEAR VISCOSITY OF WATER-CU NANOFLUIDS USING EQUILIBRIUM MOLECULAR DYNAMICS

机译:平衡分子动力学预测水 - Cu纳米流体的热导率和剪切粘度

获取原文

摘要

Nanofluids are new class of fluids which can be used for many engineering applications due to their enhanced thermal properties. The macroscopic modeling tools used for flow simulations usually rely on effective thermal and rheological properties of the nanofluids that can be predicted through various effective medium theories. As these theories significantly under-predict, using correlations based on experimental data is considered as the only reliable means for prediction of these effective properties. However, the behavior might change significantly once the particle material or base fluid change due to different particle fluid interactions in the molecular level. One of the most promising means of modeling effective properties of the nanofluids is the molecular dynamics simulations where all the intermolecular effects can be modeled. This study investigates equilibrium molecular dynamics simulation of the water-Cu nanofluids to predict the thermal and rheological properties. The molecular dynamics simulation is carried out to achieve a thermodynamic equilibrium, based on a state that is defined by targeted thermodynamic properties of the system. The Green-Kubo method is used to predict the thermal conductivity and viscosity of the system. The study considers the use of different combining rules such as Lorentz-Berthelot and sixth-power rules for defining the inter-atomic potentials for water modeled by SPC/E and nanoparticles modeled by Lennard-Jones potential. The predicted effective properties that are thermal conductivity and shear viscosity are then compared with experimental data from literature. The predicted transport properties at different temperatures and particle concentrations are compared to experimental data from literature for model validation.
机译:纳米流体是新一类液体,其可用于许多工程应用,由于其增强的热性能。用于流动模拟的宏观建模工具通常依赖于可以通过各种有效介质理论预测的纳米流体的有效热性和流变性质。随着这些理论显着预测,使用基于实验数据的相关性被认为是预测这些有效性质的唯一可靠性手段。然而,由于分子水平的不同颗粒流体相互作用,颗粒材料或基础流体变化可能会显着变化。纳米流体的有效性质的最有希望的最有希望的方法之一是分子动力学模拟,其中可以建模所有分子间效应。本研究研究了水 - Cu纳米流体的平衡分子动力学模拟,以预测热和流变性质。基于由系统的目标热力学性质定义的状态,进行分子动力学模拟以实现热力学平衡。 Green-Kubo方法用于预测系统的导热率和粘度。该研究考虑了不同组合规则,例如Lorentz-Berthelot和第六次电源规则,用于定义由Lennard-Jones潜力建模的SPC / E和纳米粒子模拟的水模型的原子间电位。然后将导热性和剪切粘度的预测有效性与文献的实验数据进行比较。将不同温度和颗粒浓度的预测运输性能与来自文献的实验数据进行比较,用于模型验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号